The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche.
Activation of several ADP-ribosylation factors (ARFs) by guanine nucleotide exchange factors (GEFs) regulates recruitment of coat proteins (COPs) on the Golgi complex and is generally assumed to be the target of brefeldin A (BFA). The large ARF-GEFs Golgi-specific BFA resistance factor 1 (GBF1) and BFA-inhibited GEFs (BIGs) localize to this organelle but catalyze exchange preferentially on class II and class I ARFs, respectively. We now demonstrate using quantitative confocal microscopy that these GEFs show a very limited overlap with each other (15 and 23%). In contrast, GBF1 colocalizes with the cis-marker p115 (86%), whereas BIGs overlap extensively with TGN38 (83%). Consistent with these distributions, GBF1, but not BIG1, partially relocalized to peripheral sites after incubation at 15 degrees C. The new GBF1 structures represent peripheral vesicular tubular clusters (VTCs) because 88% of structures analyzed stained for both GBF1 and p115. Furthermore, as expected of VTCs, they rapidly reclustered to the Golgi complex in a microtubule-dependent manner upon warm-up. These observations suggest that GBF1 and BIGs activate distinct subclasses of ARFs in specific locations to regulate different types of reactions. In agreement with this possibility, COPI overlapped to a greater extent with GBF1 (64%) than BIG1 (31%), whereas clathrin showed limited overlap with BIG1, and virtually none with GBF1.
The small GTPase Arf6 has been shown to regulate the post-endocytic trafficking of a subset of membrane proteins, including beta1 integrins, and inhibition of Arf6 function impairs both cell adhesion and motility. The activity of Arf GTPases is regulated by a large family of guanine nucleotide exchange factors (GEFs). Arf-GEP100/BRAG2 is a GEF with reported specificity for Arf6 in vitro, but it is otherwise poorly characterized. Here we report that BRAG2 exists in two ubiquitously expressed isoforms, which we call BRAG2a and BRAG2b, both of which can activate Arf6 in vivo. Depletion of endogenous BRAG2 by siRNA leads to dramatic effects in the cell periphery; one such effect is an accumulation of beta1 integrin on the cell surface and a corresponding enhancement of cell attachment and spreading on fibronectin-coated substrates. In contrast, depletion of Arf6 leads to intracellular accumulation of beta1 integrin and reduced adhesion and spreading. These findings suggest that Arf6 regulates both endocytosis and recycling of beta1 integrins and that BRAG2 functions selectively to activate Arf6 during integrin internalization.
A phenotypic screen was used to search for drug-like molecules that can interfere with specific steps in membrane traffic. 2-(4-Fluorobenzoylamino)-benzoic acid methyl ester (Exo1), identified in this screen, induces a rapid collapse of the Golgi to the endoplasmic reticulum, thus acutely inhibiting the traffic emanating from the endoplasmic reticulum. Like Brefeldin A (BFA), Exo1 induces the rapid release of ADP-ribosylation factor (ARF) 1 from Golgi membranes but has less effect on the organization of the trans-Golgi network. Our data indicate that Exo1 acts by a different mechanism from BFA. Unlike BFA, Exo1 does not induce the ADP-ribosylation of CtBP͞Bars50 and does not interfere with the activity of guanine nucleotide exchange factors specific for Golgibased ARFs. Thus, Exo1 allows the fatty acid exchange activity of Bars50 to be distinguished from ARF1 activity in the control of Golgi tubulation.Golgi ͉ ADP-ribosylation factor ͉ endoplasmic reticulum (ER) ͉ imaging-based screen ͉ Bars50
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.