Doxorubicin (DOX) can induce myocardial energy metabolism disorder and further worsen heart failure. “Energy protection” is proposed as a new cardiac protection strategy. Previous studies have found that Di’ao Xinxuekang (DXXK) can improve doxorubicin-induced cardiotoxicity in mice by inhibiting ferroptosis. However, there are very few studies associating DXXK and energy protection. This study aims to explore the “energy protection” effect of DXXK on cardiotoxicity induced by DOX. A DOX-induced cardiotoxicity model established in rats and H9c2 cells are used to analyze the therapeutic effects of DXXK on serum indexes, cardiac function indexes and cardiac histopathology. The metabonomic methods were used to explore the potential mechanism of DXXK in treating DOX-induced cardiotoxicity. In addition, we also observed the mitochondrial- and autophagy-related indicators of myocardial cells and the mRNA expression level of the core target regulating energy-metabolism-related pathways. Our results indicated that DXXK can improve cardiac function, reduce myocardial enzymes and alleviate the histological damage of heart tissue caused by DOX. In addition, DXXK can improve mitochondrial damage induced by DOX and inhibit excessive autophagy. Metabonomics analysis showed that DOX can significantly affects the pathways related to energy metabolism of myocardial cells, which are involved in the therapeutic mechanism of DXXK. In conclusion, DXXK can treat DOX-induced cardiotoxicity through the AMPK-mediated energy protection pathway.
Statins are the first choice for lowering low-density lipoprotein cholesterol (LDL-C) and preventing atherosclerotic cardiovascular disease (ASCVD). However, statins can also upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which in turn might limits the cholesterol-lowering effect of statins through the degradation of LDL receptors (LDLR). Di’ao Xinxuekang (DXXK) capsule, as a well-known traditional Chinese herbal medicine for the prevention and treatment of coronary heart disease, can alleviate lipid disorders and ameliorate atherosclerosis in atherosclerosis model mice and downregulate the expression of PCSK9. In this study, we further explored whether DXXK has a synergistic effect with atorvastatin (ATO) and its underlying molecular mechanism. The results showed that both ATO monotherapy (1.3 mg/kg) and ATO combined with DXXK therapy significantly lowered serum lipid levels and reduced the formation of atherosclerotic plaques and the liver lipid accumulation. Moreover, compared with ATO monotherapy, the addition of DXXK (160 mg/kg) to the combination therapy further lowered LDL-C by 15.55% and further reduced the atherosclerotic plaque area by 25.98%. In addition, the expression of SREBP2, PCSK9 and IDOL showed a significant increase in the model group, and the expression of LDLR was significantly reduced; however, there were no significant differences between the ATO (1.3 mg/kg) and the model groups. When ATO was combined with DXXK, the expression of LDLR was significantly increased and was higher than that of the model group and the expression of SREBP2 and PCSK9 in the liver was also significantly inhibited. Moreover, it can be seen that the expression of SREBP2 and PCSK9 in the combination treatment group was significantly lower than that in the ATO monotherapy group (1.3 mg/kg). Besides, the expression of IDOL mRNA in each treatment group was not significantly different from that of the model group. Our study suggests that DXXK might have a synergistic effect on the LDL-C lowering and antiatherosclerosis effects of ATO through the SREBP2/PCSK9 pathway. This indicates that a combination of DXXK and ATO may be a new treatment for atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.