Nucleic-acid detection via isothermal amplification and collateral cleavage of reporter molecules by CRISPR-associated enzymes is a promising alternative to quantitative polymerase chain reaction (qPCR). Here, we report the clinical validation of the SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) assay using the enzyme Cas13a from Leptotrichia wadei for the detection of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) -the virus that causes COVID-19 (coronavirus disease 2019) -in 154 nasopharyngeal and throat swab samples collected at Siriraj Hospital, Thailand. Within a detection limit of 42 RNA copies per
Background The Coronavirus disease 2019 (COVID-19) pandemic continues to spread across the world. Hence, there is an urgent need for rapid, simple, and accurate tests to diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Performance characteristics of the rapid SARS-CoV-2 antigen detection test should be evaluated and compared with the gold standard real-time reverse transcription-polymerase chain reaction (RT-PCR) test for diagnosis of COVID-19 cases. Methods The rapid SARS-CoV-2 antigen detection test, Standard™ Q COVID-19 Ag kit (SD Biosensor®, Republic of Korea), was compared with the real-time RT-PCR test, Allplex™ 2019-nCoV Assay (Seegene®, Korea) for detection of SARS-CoV-2 in respiratory specimens. Four hundred fifty-four respiratory samples (mainly nasopharyngeal and throat swabs) were obtained from COVID-19 suspected cases and contact individuals, including pre-operative patients at Siriraj Hospital, Bangkok, Thailand during March–May 2020. Results Of 454 respiratory samples, 60 (13.2%) were positive, and 394 (86.8%) were negative for SARS-CoV-2 RNA by real-time RT-PCR assay. The duration from onset to laboratory test in COVID-19 suspected cases and contact individuals ranged from 0 to 14 days with a median of 3 days. The rapid SARS-CoV-2 antigen detection test’s sensitivity and specificity were 98.33% (95% CI, 91.06–99.96%) and 98.73% (95% CI, 97.06–99.59%), respectively. One false negative test result was from a sample with a high real-time RT-PCR cycle threshold (Ct), while five false positive test results were from specimens of pre-operative patients. Conclusions The rapid assay for SARS-CoV-2 antigen detection showed comparable sensitivity and specificity with the real-time RT-PCR assay. Thus, there is a potential use of this rapid and simple SARS-CoV-2 antigen detection test as a screening assay.
PA-X is a recently identified influenza virus protein that is composed of the PA N-terminal 191 amino acids and unique C-terminal 41 or 61 residues. We and others showed that PA-X has a strong ability to suppress host protein synthesis via host mRNA decay, which is mediated by endonuclease activity in its N-terminal domain (B. -12). However, the mechanism of host mRNA degradation, especially where and how PA-X targets mRNAs, has not been analyzed. In this study, we determined the localization of PA-X and the role of the C-terminal unique region in shutoff activity. Quantitative subcellular localization analysis revealed that PA-X was located equally in both cytoplasm and nucleus. By characterizing a series of PA-X C-terminal deletion mutants, we found that the first 9 amino acids were sufficient for nuclear localization, but an additional 6 residues were required to induce the maximum shutoff activity observed with intact PA-X. Importantly, forced nuclear localization of the PA-X C-terminal deletion mutant enhanced shutoff activity, highlighting the ability of nuclear PA-X to degrade host mRNAs more efficiently. However, PA-X also inhibited luciferase expression from transfected mRNAs synthesized in vitro, suggesting that PA-X also degrades mRNAs in the cytoplasm. Among the basic amino acids in the PA-X C-terminal region, 3 residues, 195K, 198K, and 199R, were identified as key residues for inducing host shutoff and nuclear localization. Overall, our data indicate a critical role for the 15 residues in the PA-X C-terminal domain in degrading mRNAs in both the cytoplasm and nucleus.W IMPORTANCEInfluenza A viruses express PA-X proteins to suppress global host gene expression, including host antiviral genes, to allow efficient viral replication in infected cells. However, little is known about how PA-X induces host shutoff. In this study, we showed that PA-X localized equally in both the cytoplasm and nucleus of the cells, but the nuclear localization of PA-X mediated by its C-terminal region has a significant impact on shutoff activity. Three basic residues at the C-terminal region play a critical role in nuclear localization, but additional basic residues were required for maximum shutoff activity. Our findings indicate that PA-X targets and degrades mRNAs in both the nucleus and cytoplasm, and that the first 15 residues of the PA-X unique C-terminal region play a critical role in shutoff activity. Influenza virus infection induces suppression of host protein synthesis, called "host shutoff," during viral replication in infected cells. This host shutoff activity has been thought to contribute to efficient virus replication in the cells by dampening host antiviral response. Earlier studies have suggested that the capsnatching activity and degradation of RNA polymerase II mediated by viral RNA polymerase (PA, PB1, and PB2) play a role in host shutoff (1, 2). In addition, the NS1 protein, a well-known antagonist against host antiviral interferon responses, has been shown to induce host shutoff in infected c...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.