Improving energy efficiency of wireless systems by exploiting the context information has received attention recently as the smart phone market keeps expanding. In this paper, we devise energy-saving resource allocation policy for multiple base stations serving non-real-time traffic by exploiting three levels of context information, where the background traffic is assumed to occupy partial resources. Based on the solution from a total energy minimization problem with perfect future information, a context-aware BS sleeping, scheduling and power allocation policy is proposed by estimating the required future information with three levels of context information. Simulation results show that our policy provides significant gains over those without exploiting any context information. Moreover, it is seen that different levels of context information play different roles in saving energy and reducing outage in transmission.
Wireless big data is attracting extensive attention from operators, vendors and academia, which provides new freedoms in improving the performance from various levels of wireless networks. One possible way to leverage big data analysis is predictive resource allocation, which has been reported to increase spectrum and energy resource utilization efficiency with the predicted user behavior including user mobility. However, few works address how the traffic load prediction can be exploited to optimize the data-driven radio access. We show how to translate the predicted traffic load into the essential information used for resource optimization by taking energy-saving transmission for non-real-time user as an example. By formulating and solving an energy minimizing resource allocation problem with future instantaneous bandwidth information, we not only provide a performance upper bound, but also reveal that only two key parameters are related to the future information. By exploiting the residual bandwidth probability derived from the traffic volume prediction, the two parameters can be estimated accurately when the transmission delay allowed by the user is large, and the closed-form solution of global optimal resource allocation can be obtained when the delay approaches infinity. We provide a heuristic resource allocation policy to guarantee a target transmission completion probability when the delay is no-so-large. Simulation results validate our analysis, show remarkable energy-saving gain of the proposed predictive policy over non-predictive policies, and illustrate that the time granularity in predicting traffic load should be identical to the delay allowed by the user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.