As the latest member of the multiple access family, non-orthogonal multiple access (NOMA) has been recently proposed for 3GPP Long Term Evolution (LTE) and envisioned to be an essential component of 5th generation (5G) mobile networks. The key feature of NOMA is to serve multiple users at the same time/frequency/code, but with different power levels, which yields a significant spectral efficiency gain over conventional orthogonal MA. The article provides a systematic treatment of this newly emerging technology, from its combination with multiple-input multiple-output (MIMO) technologies, to cooperative NOMA, as well as the interplay between NOMA and cognitive radio. This article also reviews the state of the art in the standardization activities concerning the implementation of NOMA in LTE and 5G networks.
Millimeter wave (mmWave) MIMO will likely use hybrid analog and digital precoding, which uses a small number of RF chains to avoid energy consumption associated with mixed signal components like analog-to-digital components not to mention baseband processing complexity. However, most hybrid precoding techniques consider a fully-connected architecture requiring a large number of phase shifters, which is also energyintensive. In this paper, we focus on the more energy-efficient hybrid precoding with sub-connected architecture, and propose a successive interference cancelation (SIC)-based hybrid precoding with near-optimal performance and low complexity. Inspired by the idea of SIC for multi-user signal detection, we first propose to decompose the total achievable rate optimization problem with non-convex constraints into a series of simple sub-rate optimization problems, each of which only considers one sub-antenna array. Then, we prove that maximizing the achievable sub-rate of each sub-antenna array is equivalent to simply seeking a precoding vector sufficiently close (in terms of Euclidean distance) to the unconstrained optimal solution. Finally, we propose a low-complexity algorithm to realize SICbased hybrid precoding, which can avoid the need for the singular value decomposition (SVD) and matrix inversion. Complexity evaluation shows that the complexity of SIC-based hybrid precoding is only about 10% as complex as that of the recently proposed spatially sparse precoding in typical mmWave MIMO systems. Simulation results verify the near-optimal performance of SIC-based hybrid precoding.Index Terms-MIMO, mmWave communications, hybrid precoding, energy-efficient, 5G.
Abstract-Millimeter wave (mmWave) communications have recently attracted large research interest, since the huge available bandwidth can potentially lead to rates of multiple Gbps (gigabit per second) per user. Though mmWave can be readily used in stationary scenarios such as indoor hotspots or backhaul, it is challenging to use mmWave in mobile networks, where the transmitting/receiving nodes may be moving, channels may have a complicated structure, and the coordination among multiple nodes is difficult. To fully exploit the high potential rates of mmWave in mobile networks, lots of technical problems must be addressed. This paper presents a comprehensive survey of mmWave communications for future mobile networks (5G and beyond). We first summarize the recent channel measurement campaigns and modeling results. Then, we discuss in detail recent progresses in multiple input multiple output (MIMO) transceiver design for mmWave communications. After that, we provide an overview of the solution for multiple access and backhauling, followed by analysis of coverage and connectivity. Finally, the progresses in the standardization and deployment of mmWave for mobile networks are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.