The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected global public health and economy. Despite the substantial efforts, only few vaccines are currently approved and some are in the different stages of clinical trials. As the disease rapidly spreads, an affordable and effective vaccine is urgently needed. In this study, we investigated the immunogenicity of plant-produced receptor-binding domain (RBD) of SARS-CoV-2 in order to use as a subunit vaccine. In this regard, RBD of SARS-CoV-2 was fused with Fc fragment of human IgG1 and transiently expressed in Nicotiana benthamiana by agroinfiltration. The plant-produced RBD-Fc fusion protein was purified from the crude extract by using protein A affinity column chromatography. Two intramuscular administration of plant-produced RBD-Fc protein formulated with alum as an adjuvant have elicited high neutralization titers in immunized mice and cynomolgus monkeys. Further it has induced a mixed Th1/Th2 immune responses and vaccine-specific T-lymphocyte responses which was confirmed by interferon-gamma (IFN-γ) enzyme-linked immunospot assay. Altogether, our results demonstrated that the plant-produced SARS-CoV-2 RBD has the potential to be used as an effective vaccine candidate against SARS-CoV-2. To our knowledge, this is the first report demonstrating the immunogenicity of plant-produced SARS-CoV-2 RBD protein in mice and non-human primates.
More than 65 million people have been confirmed infection with SARS-CoV-2 and more than 1 million have died from COVID-19 and this pandemic remains critical worldwide. Effective vaccines are one of the most important strategies to limit the pandemic. Here, we report a construction strategy of DNA vaccine candidates expressing full length wild type SARS-CoV-2 spike (S) protein, S1 or S2 region and their immunogenicity in mice. All DNA vaccine constructs of pCMVkan-S, -S1 and -S2 induced high levels of specific binding IgG that showed a balance of IgG1/IgG2a response. However, only the sera from mice vaccinated with pCMKkan-S or -S1 DNA vaccines could inhibit viral RBD and ACE2 interaction. The highest neutralizing antibody (NAb) titer was found in pCMVkan-S group, followed by -S1, while -S2 showed the lowest PRNT50 titers. The geometric mean titers (GMTs) were 2,551, 1,005 and 291 for pCMVkan-S, -S1 and -S2, respectively. pCMVkan-S construct vaccine also induced the highest magnitude and breadth of T cells response. Analysis of IFN-γ positive cells after stimulation with SARS-CoV-2 spike peptide pools were 2,991, 1,376 and 1,885 SFC/106 splenocytes for pCMVkan-S, -S1 and -S2, respectively. Our findings highlighted that full-length S antigen is more potent than the truncated spike (S1 or S2) in inducing of neutralizing antibody and robust T cell responses.
The first licensed dengue vaccine, CYD-TDV (Dengvaxia®), has received regulatory approval in a number of countries. However, this vaccine has some limitations. Its efficacy against DENV2 was consistently lower than other serotypes. Protective efficacy also depended on prior dengue sero-status of the vaccinees. Lower efficacy was observed in children with < 9 years old and dengue-naïve individuals. More importantly, risk of hospitalization and severe dengue was increased in the youngest vaccine recipients (2-5 years) compared to controls. Thus, the quest of a better vaccine candidate continues. There are two live-attenuated vaccine candidates currently testing in phase III trial including DENVax, developed by US CDC and Inviragen (now licensed to Takeda) and TV003/TV005, constructed by US NIAID. In addition, there are several phase I-II as well as preclinical phase studies evaluating vaccines for safety and immunogenicity, this include other live-attenuated platform/strategy, purified-inactivated viruses formulated with adjuvants, DNA vaccine, subunit vaccine, viral vector and also heterologous prime/boost strategies. The major difficulties of dengue vaccine development are included the lack of the best animal model, various immune status of individual especially in endemic areas and clear cut off of protective immunity. Several research and development efforts are ongoing to find a better effective and accessible dengue vaccine for people needed.
In view of addressing the global necessity of an effective vaccine in the SARS-CoV-2 pandemic, a plasmid DNA vaccine, expressing for the spike (S) protein and formulated in lipoplexes, was manufactured and tested for in vitro transfection and in vivo immunogenicity. Blank cationic liposomes of 130.9 ± 5.8 nm in size and with a zeta potential of +48 ± 12 mV were formulated using the thin-film layer rehydration method. Liposomes were complexed with pCMVkan-S at different N/P ratios. Ratios of 0.25:1 and 1:1 were selected according to their complex stability and controlled size compared to other ratios and tested in vitro for transfection studies and in vivo for immunogenicity. Both selected formulations showed enhanced neutralizing antibody responses compared to pCMVkan-S injected alone, as well as an increased T cell response. The titers observed were similar to those of intramuscular electroporation (IM-EP), which was set as an efficacy goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.