Homogeneous 2D lamellar assemblies of Au thiolate coordination polymer (ATCP) were obtained by two-ligand co-assembly. The orbital levels and the bandgap of the 2D Au -S network in the centre of the lamellae can be continuously tuned by means of the capping ligands on both sides, to give a new type of inorganic-organic composite semiconductor, the band structure of which can be easily tuned by low-temperature solution-phase co-assembly. Furthermore, the chemical reactivity of these ATCP co-assemblies also proved to be strongly dependent on the organic substituents, with well-tuneable transformation rates to gold nanoparticles. Apparently, this is the first work to demonstrate how organic substituents can continuously tune the electron band structure and chemical reactivity of inorganic atomic layers of semiconductor through co-assembly.
Two pseudopolymorphs are achieved in two solvents and exhibit high structure preservation but have distinct optical properties, morphology and thermal stability.
Molecular self-assembly has played an important role in nanofabrication. Due to the weak driving forces of noncovalent bonds, developing molecular nanoassemblies that have both robust preparation conditions and stable structure is a challenge. In our previous work, we have developed a reversible self-assembly system of Au(I)-thiolate coordination polymer (ATCP) to form colloidal lamellar sheets and demonstrated the high tailorability and stability of their structures, as well as their promising applications in gold nanocluster/nanoparticle fabrication and UV light shielding. Here, we first reported our progress in exploring a robust and green assembly protocol toward ATCP colloidal lamellar sheets in water by allowing the molecular precursors of HAuCl and the thiol ligand to form ATCP preassembled intermediates. In this way, colloidal ATCP lamellar sheets can be prepared in a wide range of synthetic concentrations ([Au] ≥ 2 × 10 M) and at broad assembly temperatures (80-100 °C) with similar high yields (>80%). The assembly kinetics at different conditions are also studied in detail to help understand the robust assembly process. The robust and green synthetic protocols will pave a way for their real applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.