Background: The actual consequences of low testosterone levels in women remain uncertain. Objective: To assess endogenous testosterone influence on body composition, vascular and metabolic function in recent postmenopausal women. Design: We studied 81 postmenopausal women under transdermal estradiol (E 2 ) replacement therapy, 36 with bilateral oophorectomy (group O), and 45 controls (group C) through venous occlusion plethysmography, bioimpedance, DEXA, biochemical, hormonal, and inflammatory profile. Results: Total testosterone level (TT) in group O was 11.0 (4.0-17.75) vs 23.0 (10.0-42.5) ng/dl in group C (PZ0.001). Forearm blood flow, in ml/min/100 ml tissue, was lower in group O compared to group C at baseline (1.57 (1.05-2.47) vs 2.19 (1.59-2.66) PZ0.036), following reactive hyperemia response (endothelium-dependent flow mediated dilatation, 3.44 (2.38-4.35) vs 4.3 (3.09-5.52), PZ0.031) and following nitroglycerin (endothelium-independent dilation, 1.39 (0.99-1.7) vs 1.76 (1.15-2.0), PZ0.025), with a positive correlation between TT and all parameters except for the reactive hyperemia response (rZ0.233-0.312, PZ0.036-0.004). The sVCAM1 levels were negatively correlated with TT (rZ-0.320, PZ0.005). E 2 and other hormone levels, biochemical parameters and body composition did not differ between groups. Multiple linear regressions showed that the levels of TT, compared with other confounding variables, may explain the variation observed on endothelial parameters, with low explanatory power. Conclusion: The absence of ovarian testosterone production in recent postmenopausal oophorectomized women was associated with deleterious effects on endothelial function.
-Objective: To investigate different fuzzy arithmetical operations to support in the diagnostic of epileptic events and non epileptic events. Method: A neuro-fuzzy system was developed using the NEFCLASS (NEuro Fuzzy CLASSIfication) architecture and an artificial neural network with backpropagation learning algorithm (ANNB). Results: The study was composed by 244 patients with a bigger frequency of the feminine sex. The number of right decisions at the test phase, obtained by the NEFCLASS and ANNB was 83.60% and 90.16%, respectively. The best sensibility result was attained by NEFCLASS (84.90%); the best specificity result were attained by ANNB with 95.65%. Conclusion: The proposed neuro-fuzzy system combined the artificial neural network capabilities in the pattern classifications together with the fuzzy logic qualitative approach, leading to a bigger rate of system success.KEY WORDS: epileptic events, non epileptic events, artificial neural network, fuzzy logic. Um sistema neuro-difuso para auxiliar no diagnóstico de eventos epilépticos e eventos não epilépticos utilizando diferentes operações aritméticas difusasResumo -Objetivo: Investigar diferentes operações aritméticas difusas para auxíliar no diagnóstico de eventos epilépticos e eventos não-epilépticos. Método: Um sistema neuro-difuso foi desenvolvido utilizando a arquitetura NEFCLASS (NEuro Fuzzy CLASSIfication) e uma rede neural artificial com o algoritmo de aprendizagem backpropagation (RNAB). Resultados: A amostra estudada foi de 244 pacientes com maior freqüência no sexo feminino. O número de decisões corretas na fase de teste, obtidas através do NEFCLASS e RNAB foi de 83,60% e 90,16%, respectivamente. O melhor resultado de sensibilidade foi obtido com o NEFCLASS (84,90%); o melhor resultado de especificidade foi obtido com a RNAB (95,65%). Conclusão: O sistema neuro-difuso proposto combinou a capacidade das redes neurais artificiais na classificação de padrões juntamente com a abordagem qualitativa da logica difusa, levando a maior taxa de acertos do sistema. PALAVRAS-CHAVE: eventos epilépticos, eventos não epilépticos, rede neural artificial, lógica difusa.
No abstract
Depois de anos dedicados à especialidade de sua escolha, os médicos atentos aos avanços da Medicina e às possibilidades de aquisição de novos conhecimentos deparam com mais um desafio: a obtenção do título de especialista. Porém, mais do que o reconhecimento de sua trajetória rumo à excelência profissional, o interesse por tal conquista confirma a preocupação desses indivíduos com o seu papel social de oferecer à população um serviço com a profundidade, a confiança e a eficiência de que ela venha a necessitar. E é em nome desses profissionais que a Sociedade Brasileira de Endocrinologia e Metabologia (SBEM) concebeu o TEEM – Preparação para Título de Especialista em Endocrinologia e Metabologia, nesse segundo volume, com novidades a fim de facilitar ainda mais a absorção do conteúdo presente nas 300 questões e nos 30 casos clínicos comentados dos anos de 2017, 2018 e 2019. Tudo isso reforçando a certeza de que esta obra representa um objeto de estudo fundamental!
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.