Pomegranate (Punica granatum L.), one of the oldest known edible fruits, is nowadays broadly consumed throughout the world. Its fruits and seeds as well as other anatomical compartments (e.g., flowers and leaves) are rich in numerous bioactive compounds and therefore, the scientific interest in this plant has been constantly growing in recent years. It has been shown that pomegranate and its extracts exhibit potent antioxidative, antimicrobial, and anticarcinogenic properties. The present review summarizes some recent studies on pomegranate, highlighting mainly its vasculoprotective role attributed to the presence of hydrolyzable tannins ellagitannins and ellagic acid, as well as other compounds (e.g., anthocyanins and flavonoids). These in vitro and in vivo studies showed that substances derived from pomegranate reduce oxidative stress and platelet aggregation, diminish lipid uptake by macrophages, positively influence endothelial cell function, and are involved in blood pressure regulation. Clinical studies demonstrated that daily intake of pomegranate juice lessens hypertension and attenuates atherosclerosis in humans. Altogether, the reviewed studies point out the potential benefits of a broader use of pomegranate and its constituents as dietary supplements or as adjuvants in therapy of vascular diseases, such as hypertension, coronary artery disease, and peripheral artery disease.
Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become “immortal”) by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism.
Hepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. Chronic infections with hepatitis B (HBV) and C (HCV) viruses and alcohol abuse are the major factors leading to HCC. This deadly cancer affects more than 500,000 people worldwide and it is quite resistant to conventional chemo- and radiotherapy. Genetic and epigenetic studies on HCC may help to understand better its mechanisms and provide new tools for early diagnosis and therapy. Recent literature on whole genome analysis of HCC indicated a high number of mutated genes in addition to well-known genes such as TP53, CTNNB1, AXIN1 and CDKN2A, but their frequencies are much lower. Apart from CTNNB1 mutations, most of the other mutations appear to result in loss-of-function. Thus, HCC-associated mutations cannot be easily targeted for therapy. Epigenetic aberrations that appear to occur quite frequently may serve as new targets. Global DNA hypomethylation, promoter methylation, aberrant expression of non-coding RNAs and dysregulated expression of other epigenetic regulatory genes such as EZH2 are the best-known epigenetic abnormalities. Future research in this direction may help to identify novel biomarkers and therapeutic targets for HCC.
Benzothiazole derivatives resembling the structure of DNA purine bases were tested to determine their topoisomerase inhibition activities. Based on DNA topoisomerase I and II relaxation assay results, all 12 derivatives acted as human topoisomerase IIa inhibitors, whereas only two compounds inhibited Calf thymus topoisomerase I. 3-amino-2-(2-bromobenzyl)-1,3-benzothiazol-3-ium 4-methylbenzensulfonate (BM3) was observed to be the most effective human topoisomerase IIa inhibitor with the lowest IC 50 value of 39 nM. The mechanistic studies suggested that BM3 was neither a DNA intercalator nor a topoisomerase poison, it was only a DNA minor groovebinding agent. BM3 initially bound to the DNA topoisomerase IIa enzyme, then to DNA. As a result, the tested benzothiazole derivatives were obtained as strong topoisomerase IIa inhibitors. The benzothiazole tosylated salt form BM3 was found as the most effective topoisomerase IIa inhibitor. BM3's mechanisms of action might be its direct interaction with the enzyme. BM3's minor groove-binding property might also contribute to this action. Hence, BM3 could be a good candidate as a new anticancer agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.