Benzothiazole derivatives resembling the structure of DNA purine bases were tested to determine their topoisomerase inhibition activities. Based on DNA topoisomerase I and II relaxation assay results, all 12 derivatives acted as human topoisomerase IIa inhibitors, whereas only two compounds inhibited Calf thymus topoisomerase I. 3-amino-2-(2-bromobenzyl)-1,3-benzothiazol-3-ium 4-methylbenzensulfonate (BM3) was observed to be the most effective human topoisomerase IIa inhibitor with the lowest IC 50 value of 39 nM. The mechanistic studies suggested that BM3 was neither a DNA intercalator nor a topoisomerase poison, it was only a DNA minor groovebinding agent. BM3 initially bound to the DNA topoisomerase IIa enzyme, then to DNA. As a result, the tested benzothiazole derivatives were obtained as strong topoisomerase IIa inhibitors. The benzothiazole tosylated salt form BM3 was found as the most effective topoisomerase IIa inhibitor. BM3's mechanisms of action might be its direct interaction with the enzyme. BM3's minor groove-binding property might also contribute to this action. Hence, BM3 could be a good candidate as a new anticancer agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.