In the present study, a Box–Behnken design of response surface methodology (RSM) was employed to optimize the processing factors (force: 100, 150, and 200 kN; speed: 3, 5, and 7 mm/min; and temperature: 40, 60, and 80 °C) for extracting pumpkin seeds oil under uniaxial compression. The design generated 15 experiments including twelve combinations of factors and three replicates at the center point. The responses: oil yield (%), oil expression efficiency (%), and energy (J) were calculated, and the regression models determined were statistically analyzed and validated. The optimum factors combination: 200 kN, 4 mm/min and 80 °C predicted the oil yield of 20.48%, oil expression efficiency of 60.90%, and energy of 848.04 J. The relaxation time of 12 min at the optimum factors increased the oil efficiency to 64.53%. The lower oil point force was determined to be 57.32 kN for estimating the maximum oil output. The tangent curve and generalized Maxwell models adequately (R2 = 0.996) described the compression and relaxation processes of pumpkin seeds oil extraction. Peroxide value increased with temperatures. The study provides detailed information useful for processing different bulk oilseeds under uniaxial loading for optimizing the mechanical oil pressing in large-scale oil production.
The effect of heating and freezing pretreatments on rapeseed oil yield and the volume of oil energy under uniaxial compression loading was investigated. Four separate experiments were carried out to achieve the study objective. The first and second experiments were performed to determine the compression parameters (deformation, mass of oil, oil yield, oil expression efficiency, energy, volume of oil and volume of oil energy). The third and fourth experiments identified the optimal factors (heating temperatures: 40, 60 and 80 °C, freezing temperatures: −2, −22 and −36 °C, heating times: 15, 30 and 45 min and speeds: 5, 10 and 15 mm/min) using the Box–Behnken design via the response surface methodology where the oil yield and volume of oil energy were the main responses. The optimal operating factors for obtaining a volume of oil energy of 0.0443 kJ/mL were a heating temperature of 40 °C, heating time of 45 min and speed of 15 mm/min. The volume of oil energy of 0.169 kJ/mL was reached at the optimal conditions of a freezing temperature of −36 °C, freezing time of 37.5 min and speed of 15 mm/min. The regression model established was adequate for predicting the volume of oil energy only under heating conditions.
The energy requirement of Jatropha curcas L. seedcake of different dimensions (4.5, 5.6, 6.7, 8 and 10 mm) for briquette compaction was investigated under compression loading (100, 200, 300 and 400 kN) using the universal compression-testing machine. The parameters measured and/or calculated were the deformation, thickness, numerical energy and theoretical energy. The statistical analysis results show that compression forces had a significant effect (P-value < 0.05) on the amounts of deformation and thickness, while that of the dimensions of the sample did not. The increase in compression forces increased the numerical energy while that of samples dimensions caused a decrease. Using the tangent curve mathematical model; the force coefficient of mechanical behaviour (kN), the deformation coefficient of mechanical behaviour and the fitting curve function exponent were determined for describing the experimental dependency between the force and deformation curves as well as the numerical energies of densified jatropha seedcake briquettes.
Optimizing the operating factors in edible oil extraction requires a statistical technique such as a response surface methodology for evaluating their effects on the responses. The examined input factors in this study were the diameter of pressing vessel, VD (60, 80, and 100 mm), temperature, TPR (40, 60, and 80 °C), and heating time, HTM (30, 60 and 90 min). The combination of these factors generated 17 experimental runs where the mass of oil, oil yield, oil extraction efficiency, and deformation energy were calculated. Based on the response surface regression analysis, the combination of the optimized factors was VD: 100 (+1) mm; TPR: 80 °C (+1) and HTM: 60 (0) min); VD: 60 (−1) mm; TPR: 80 °C (+1) and HTM: 75 (+0.5) min and VD: 100 (+1) mm; TPR: 80 °C (+1) and HTM: 90 (+1). The absorbance and transmittance values significantly (p < 0.05) correlated with the wavelength and temperature, but they did not correlate significantly (p > 0.05) with heating time. The peroxide value did not correlate significantly with temperature, however, it correlated significantly with heating time. Neither the acid value nor the free fatty acid value correlated with both temperature and heating time. The findings of the present study are part of our continuing research on oilseeds’ processing optimization parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.