C1-inhibitor (C1-INH) is a major regulator of the complement classical pathway. Besides this action, it mayalso inhibit other related inflammatory systems. We have studied the effect of C1-INH in C57BL/6 mice with focal transient brain ischemia induced by 30 minutes of occlusion of the middle cerebral artery. C1-INH induced a dose-dependent reduction of ischemic volume that, with the dose of 15 U/mouse, reached 10.8% of the volume of saline-treated mice. Four days after ischemia the treated mice had significantly lower general and focal neurological deficit scores. Fluoro-Jade staining, a marker for neuronal degeneration, showed that C1-INH-treated mice had a lower number of degenerating cells. Leukocyte infiltration, as assessed by CD45 immunostaining, was also markedly decreased. We then investigated the response to ischemia in C1q ؊/؊ mice. There was a slight, nonsignificant decrease in infarct volume in C1q ؊/؊ mice (reduction to 72.3%) compared to wild types. Administration of C1-INH to these mice was still able to reduce the ischemic volume to 31.4%. The study shows that C1-INH has a strong neuroprotective effect on brain ischemia/reperfusion injury and that its action is independent from C1q-mediated activation of classical pathway. C1-inhibitor (C1-INH) is an acute phase protein belonging to the superfamily of serine protease inhibitors called serpins. It is the only known physiological inhibitor of C1s and C1r, the activated homologous serin proteases of the first component of the complement, thus playing an essential role as a regulator of complement classical pathway in blood and tissue.1 C1-INH is also one of the major inhibitors of plasma kallikrein and activated factor XII of the contact-kinin system. 2,3 Beside this essential role as regulator of the activation of complement classical pathway and of contact-kinin systems, there is evidence that C1-INH can also inhibit the complement lectin pathway proteases (MASP-1 and MASP-2), and the complement alternative pathway (C3b), plasmin, activated factor XI, plasminogen activator, and glandular kallikrein thus acting as a multifunctional regulator of the various kiningenerating cascade systems. 2-5Observations in patients receiving C1-INH as a replacement therapy for C1-INH deficiency, and studies in animal experimental models suggest that this molecule may be beneficial in clinical conditions in which activation of the complement and contact systems occurs.2,6 -9 A common feature to these systems is that on activation they give rise to biologically active peptides, including bradykinin (contact system) and anaphylatoxins (complement system) endowed with proinflammatory effects. Ischemia-reperfusion brain injury is accompanied by a marked inflammatory reaction that contributes to the evolution of tissue injury by several possible mechanisms including production of toxic mediators by activated glial and inflammatory cells and microvascular obstruction by neutrophils. 10,11 Complement is known to be activated in human stroke 12 as well as in experimental ...
Arterial hypertension is not only a major risk factor for cerebrovascular accidents, such as stroke and cerebral hemorrhage, but is also associated to milder forms of brain injury. One of the main causes of neurodegeneration is the increase in reactive oxygen species (ROS) that is also a common trait of hypertensive conditions, thus suggesting that such a mechanism could play a role even in the onset of hypertension-evoked brain injury. To investigate this issue, we have explored the effect of acute-induced hypertensive conditions on cerebral oxidative stress. To this aim, we have developed a mouse model of transverse aortic coarctation (TAC) between the two carotid arteries, which imposes acutely on the right brain hemisphere a dramatic increase in blood pressure. Our results show that hypertension acutely induced by aortic coarctation induces a breaking of the blood-brain barrier (BBB) and reactive astrocytosis through hyperperfusion, and evokes trigger factors of neurodegeneration such as oxidative stress and inflammation, similar to that observed in cerebral hypoperfusion. Moreover, the derived brain injury is mainly localized in selected brain areas controlling cognitive functions, such as the cortex and hippocampus, and could be a consequence of a defect in the BBB permeability. It is noteworthy to emphasize that, even if these latter events are not enough to produce ischemic/hemorrhagic injury, they are able to alter mechanisms fundamental for maintaining normal brain function, such as protein synthesis, which has a prominent role for memory formation and cortical plasticity.
Purpose of the study Defibrotide (DF), an orally bioavailable polydisperse oligonucleotide has promising activity in hepatic veno-occlusive disease (VOD), a stem cell transplantation-related toxicity, characterized by microangiopathy. The anti-thrombotic properties of DF and its minimal hemorrhagic risk could serve for treatment of cancer-associated thrombotic complications. Given its cytoprotective effect on endothelium, we investigated whether DF protects tumor cells from cytotoxic anti-tumor agents. Further, given its anti-adhesive properties, we evaluated whether DF modulates the protection conferred to multiple myeloma (MM) cells by bone marrow stromal cells (BMSCs). Methods-Results DF lacks significant single-agent in vitro cytotoxicity on MM or solid tumor cells and does not attenuate their in vitro response to dexamethasone, bortezomib, immunomodulatory thalidomide derivatives, and conventional chemotherapeutics, including melphalan and cyclophosphamide. Importantly, DF enhances in vivo chemosensitivity of MM and mammary carcinoma xenografts in animal models. In co-cultures of MM cells with BMSCs in vitro, DF enhances the MM cell sensitivity to melphalan and dexamethasone, decreases MM-BMSC adhesion and its sequelae, including NF-κB activation in MM and BMSCs, and associated cytokine production. Moreover, DF inhibits expression and/or function of key mediators of MM interaction with BMSC and endothelium, including heparanase, angiogenic cytokines and adhesion molecules. Conclusion Defibrotide’s in vivo chemosensitizing properties and lack of direct in vitro activity against tumor cells suggest that it favorably modulates antitumor interactions between BMSC and endothelia in the tumor microenvironment. These data support clinical studies of DF in combination with conventional and novel therapies to potentially improve patient outcome in MM and other malignancies.
Rai (Shc C or N-Shc) is a neuron-specific member of the family of Shc-like adaptor proteins. Rai functions in the cytoplasmic propagation of Ret-dependent survival signals and regulates, in vivo, the number of sympathetic neurons. We report here a function of Rai, i.e., the regulation of the neuronal adaptive response to environmental stresses. We demonstrate that (i) primary cultures of cortical neurons from Rai ؊/؊ mice are more sensitive to apoptosis induced by hypoxia or oxidative stress; (ii) in Rai ؊/؊ mice, ischemia͞ reperfusion injury induces severe neurological deficits, increased apoptosis and size of the infarct area, and significantly higher mortality; and (iii) Rai functions as a stress-response gene that increases phosphatidylinositol 3-kinase activation and Akt phosphorylation after hypoxic or oxidation insults. These data suggest that Rai has a functional neuroprotective role in brain injury, with possible implications in the treatment of stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.