Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian infl uenza virus. We found antibodies to a variety of infl uenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human infl uenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of infl uenza virus with genetic reassortment and creation of novel strains of infl uenza virus. Experimental and fi eld data indicate that raccoons may play an important role in infl uenza disease ecology and pose risks to agriculture and human health.T he primary reservoirs of avian infl uenza (AI) are wild birds in the orders Anseriformes (ducks, geese, and swans) and Charadriiformes (gulls, terns, and shorebirds). In these hosts, low-pathogenic forms of the virus typically cause little or no apparent disease, however, large quantities of virus are shed in fecal matter. AI virus is relatively stable in water and can remain viable for up to 200 days, depending on temperature and other environmental factors (1). Thus, bodies of water and adjacent shorelines that wild birds use can become potentially contaminated, increasing the likelihood of subsequent exposure of avian and nonavian species to AI virus.The preference of infl uenza viruses for different cellular receptors and the presence and distribution of those receptors in the host are important factors involved in determining host range and tissue tropism (2). Humans are not typically infected by AI virus because receptors for this virus are distributed in tissues that are located predominantly in the lower respiratory tract. As such, these receptors are not as accessible as human type receptors found in the upper respiratory tissues and require more intimate contact for transmission. Swine are considered important intermediate hosts between birds and humans because they are frequently infected by avian and human infl uenza viruses (3). This fi nding underscores the potential for genetic reassortment that can create new, possibly more virulent subtypes.Other non-avian hosts of AI virus include mink, harbor seals, pilot whales, dogs, cats, and horses (4). These species were found to be competent hosts only after attracting attention because of severe death or illness (4). Wild mammals often reside in the same habitats as waterfowl, feed in the same agricultural areas, wallow and swim in the same bodies of water, and prey on and scavenge dead birds for food. Therefore, ample opportunities exist for free-ranging wild mammals to be exposed to AI by contact with waterfowl and their environment. Many of these species ...
We identified a novel rhabdovirus, American bat vesiculovirus, from postmortem tissue samples from 120 rabies-negative big brown bats with a history of human contact. Five percent of the tested bats were infected with this virus. The extent of zoonotic exposure and possible health effects in humans from this virus are unknown.
ABSTRACT:American black bears (Ursus americanus) in Maryland, USA, live in forested areas in close proximity to humans and their domestic pets. From 1999 to 2011, we collected 84 serum samples from 63 black bears (18 males; 45 females) in five Maryland counties and tested them for exposure to infectious, including zoonotic, pathogens. A large portion of the bears had antibody to canine distemper virus and Toxoplasma gondii, many at high titers. Prevalences of antibodies to zoonotic agents such as rabies virus and to infectious agents of carnivores including canine adenovirus and canine parvovirus were lower. Bears also had antibodies to vector-borne pathogens common to bears and humans such as West Nile virus, Borrelia burgdorferi, Rickettsia rickettsii, and Anaplasma phagocytophilum. Antibodies were detected to Leptospira interrogans serovars Pomona, Icterohaemorrhagiae, Canicola, Grippotyphosa, and Bratislava. We did not detect antibodies to Brucella canis or Ehrlichia canis. Although this population of Maryland black bears demonstrated exposure to multiple pathogens of concern for humans and domesticated animals, the low levels of clinical disease in this and other free-ranging black bear populations indicate the black bear is likely a spillover host for the majority of pathogens studied. Nevertheless, bear populations living at the human-domestic-wildlife interface with increasing human and domestic animal exposure should continue to be monitored because this population likely serves as a useful sentinel of ecosystem health.
Ulcers in Atlantic menhaden Brevoortia tyrannus (Latrobe) (Clupeidae), observed along the USA east coast, have been attributed to diverse etiologies including bacterial, fungal and, recently, harmful algal blooms. To understand the early pathogenesis of these lesions, we examined juvenile Atlantic menhaden collected during their seasonal presence in Chesapeake Bay tributaries from April to October 1999 and from March to August 2000. We conducted histopathological examinations of young-of-the-year fish from the Pocomoke River tributary, which has a history of fish mortalities and high lesion prevalence. Kudoa clupeidae (Myxozoa: Myxosporea) spores were present in the muscles of fish collected in both years. Of the fish assessed by histology in April, 5 to 14% were infected, while in May 90 to 96% were infected. Infection rates remained high during the summer. Mature spores were primarily located within myomeres and caused little or no observable pathological changes. Ultrastructure showed spores with capsulogenic cells bearing filamentous projections, and a basal crescentic nucleus with mottled nucleoplasm containing cleaved, condensed chromatin. Also, a highly invasive plasmodial stage of a myxozoan was found in the lesions of juvenile Atlantic menhaden. The plasmodia were observed in fish collected between May and July, with the maximum occurrence in late June 1999 and late May 2000. Plasmodia penetrated and surrounded muscle bundles, causing grossly observable raised lesions in 73% of all fish infected with this invasive stage. Plasmodia were also detected in the visceral organs, branchial arches, and interocular muscles of some fish. Some of the invasive extrasporogonic plasmodial lesions were associated with ulcers and chronic inflammatory infiltrates. The plasmodial stage appeared to slough out of the tissue with subsequent evidence of wound healing. Ultrastructure showed plasmodia with an elaborate irregular surface, divided into distinct ectoplasm and endoplasm; the latter contained numerous spherical vegetative nuclei, secondary generative cells, and occasional cell doublets. Our ultrastructural studies indicate that the plasmodial organisms, which are important in the etiology of the skin lesions, are myxozoans, and they may represent early stages of K. clupeidae. KEY WORDS: Atlantic menhaden · Brevoortia tyrannus · Kudoa clupeidae · Myxosporea · Plasmodia · LesionsResale or republication not permitted without written consent of the publisher
Serum chemistry panels and complete mineral and heavy metal screens were performed on blood samples from eight adult northern goshawks (Accipiter gentilis) breeding in Pennsylvania. Serum chemistry panels were performed to determine the health status of each bird. Biochemical values measured included serum glucose, sodium, potassium, chloride, magnesium, uric acid, creatine kinase, and aspartate transaminase. Glucose, creatine kinase, and aspartate transaminase values were elevated when compared with published values for northern goshawks and other species of raptors. Complete mineral screens were performed to better document the blood mineral content of northern goshawks. Plasma calcium, copper, iron, magnesium, total phosphorus, potassium, sodium, and zinc levels were determined. Whole blood heavy metal screens were done to evaluate the northern goshawk's exposure to environmental arsenic, cadmium, lead, thallium, and selenium. Arsenic, cadmium, lead, and thallium whole blood levels of less than 0.05 ppm in all birds indicated that the northern goshawks were not being exposed to significant levels of heavy metals in their environment. Whole blood selenium levels of the northern goshawks were above the minimum dietary requirement for avian species (0.130-0.200 ppm) and below published toxic selenium concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.