Over 300 transgenic sugarcane plants representing approx. 200 independent lines producing the human cytokine granulocyte macrophage colony stimulating factor (GM-CSF) were analyzed for recombinant protein accumulation and activity levels. Expression constructs differed in use of the maize polyubiquitin 1, Mubi-1, or the sugarcane polyubiquitin 9, SCubi9, promoters; presence or absence of a C-terminal HDEL tag for ER retention; and presence or absence of a 6X Histidine tag for metal ion affinity purification. Accumulation of GM-CSF protein ranged from undetectable to 0.02% of total soluble protein. No significant difference was observed between the two promoters; however, the ER retention tag was required for higher accumulation levels. Human bone marrow cells (TF-1), which require GM-CSF for cell division, proliferated when growth media was supplemented with transgenic sugarcane extracts. Comparison to purified commercially produced GM-CSF indicated the sugarcane-produced protein had essentially identical activity levels. In a 14-month field trial, accumulation levels remained stable. This is the first report of field production of GM-CSF. During the field trial, no flowering of the trial plants occurred; no pollen or seed was produced. Drying, burning, and burial of the test plants effectively blocked possible routes for the transgenic sugarcane to enter the environment or food supply. Sugarcane may provide a highly secure system for biofactory production of pharmaceutical proteins.
Immature embryo explants taken 8 days after anthesis were used to establish callus cultures of spring barley. Two types of calli were observed. A soft, watery callus produced a limited number of shoots and a harder, more compact, yellowish callus gave rise to numerous green primordia and shoots. Gamborg's B5 basal medium supplemented with either 2,4-D (2,4-dichlorophenoxyacetic acid) or Cl3 POP (2,4,5-trichlorophenoxypropionic acid) was found to give good callus growth and shoot initiation. Media containing 2,4-D at 1.0 mg L(-1) or Cl3 POP at 5.0 mg L(-1) produced numerous cultures resulting in regeneration of plants. Plantlets developed roots on basal medium with Cl3 POP at 1.0 mg L(-1) or on auxin-free medium. Twenty genetically diverse genotypes were screened to determine if these techniques were suitable for a wide range of spring barley cultivars. Regeneration of plantlets was obtained for 19 of the 20 genotypes approximately 4 months after culture initiation. Lines differed in the ability to develop vigorously growing calli and in the ability of calli to develop large numbers of shoots and regenerated plantlets.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Photosynthetic properties of photoautotrophic suspensions cultured in a minimal growth medium have been evaluated to determine whether changes have occurred in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, phosphoenol-pyruvate (PEP) carboxylase activity, chlorophyll content, or culture growth. Five photoautotrophic lines Amaranthus powellii, Datura innoxia, Glycine max, Gossypium hirsutum, and a Nicotiana tabacum-Nicotiana glutinosa fusion hybrid were grown in a medium without organic carbon other than phytohormones, and without vitamins. These photoautotrophic lines had total Rubisco activities ranging from 85 to 266 micromoles CO2 fixed per milligram chlorophyll hour-1, with percent activation of Rubisco ranging from 16 to 53%. Inclusion of protease inhibitors in the homogenization buffer did not result in higher Rubisco activity. PEP carboxylase activity for cells cultured in minimal medium was found to range from 16 to 146 micromoles CO2 per milligram chlorophyll hour-', with no higher activity in the C4 Amaranthus cells compared with PEP carboxylase activity in the C3 species assayed. Rubisco-to-PEP carboxylase ratios ranged from 2.2 to 1 up to 9.4 to 1. Chlorophyll contents increased in all but the Nicotiana cell line, and all of the photoautotrophic culture lines were capable of growth in vitamin-free medium with the exception of SB-P, which requires thiamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.