STUDY QUESTION Can the organ culture method be applied to both fresh and cryopreserved human (pre)pubertal testicular tissue as a strategy for in vitro spermatogenesis? SUMMARY ANSWER Although induction of spermatogenesis was not achieved in vitro, testicular architecture, endocrine function and spermatogonial proliferation were maintained in both fresh and cryopreserved testicular tissues. WHAT IS KNOWN ALREADY Cryopreservation of a testicular biopsy is increasingly offered as a fertility preservation strategy for prepubertal cancer patients. One of the proposed experimental approaches to restore fertility is the organ culture method, which, in the mouse model, successfully allows for in vitro development of spermatozoa from testicular biopsies. However, complete spermatogenesis from human prepubertal testicular tissue in such an organ culture system has not been demonstrated. STUDY DESIGN, SIZE, DURATION Testicular tissue was collected from nine (pre)pubertal boys diagnosed with cancer (ranging from 6 to 14 years of age) admitted for fertility preservation before treatment. Testicular biopsies were either immediately processed for culture or first cryopreserved, using a controlled slow freezing protocol, and thawed before culture. Organ culture of testicular fragments was performed in two different media for a maximum period of 5 weeks, targeting early cellular events (viability, meiosis and somatic differentiation) in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS Fresh and cryopreserved-thawed testis fragments (1–2 mm3) were cultured at a gas–liquid interphase (34°C, 5% CO2) in Minimum Essential Medium alpha + 10% knock-out serum replacement medium containing 10−7 M melatonin and 10−6 M retinoic acid, with or without 3 IU/L FSH/LH supplementation. The effect of culture conditions on testicular fragments was weekly assessed by histological evaluation of germ cell development and immunohistochemical identification of spermatogonia (using MAGEA4), proliferative status of spermatogonia and Sertoli cells (using proliferating cell nuclear antigen [PCNA]), intratubular cell apoptosis (by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and Sertoli cells maturation (using Anti-Müllerian Hormone [AMH] versus Androgen Receptor [AR]). Additionally, Leydig cells’ functionality was determined by measuring testosterone concentration in the culture media supernatants. MAIN RESULTS AND THE ROLE OF CHANCE Neither fresh nor cryopreserved human (pre)pubertal testicular fragments were able to initiate spermatogenesis in our organ culture system. Nonetheless, our data suggest that fresh and cryopreserved testicular fragments have comparable functionality in the described organ culture conditions, as reflected by the absence of significant differences in any of the weekly evaluated functional parameters. Additionally, no significant differences were found between the two tested media when culturing fresh and cryopreserved human testicular fragments. Although spermatogonia survived and remained proliferative in all culture conditions, a significant reduction of the spermatogonial population (P ≤ 0.001) was observed over the culture period, justified by a combined reduction of proliferation activity (P ≤ 0.001) and increased intratubular cell apoptosis (P ≤ 0.001). We observed a transient increase in Sertoli cell proliferative activity, loss of AMH expression (P ≤ 0.001) but no induction of AR expression. Leydig cell endocrine function was successfully stimulated in vitro as indicated by increased testosterone production in all conditions throughout the entire culture period (P ≤ 0.02). LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Although not noticeable in this study, we cannot exclude that if an optimized culture method ensuring complete spermatogenesis in human testicular fragments is established, differences in functional or spermatogenic efficiency between fresh and cryopreserved tissue might be found. WIDER IMPLICATIONS OF THE FINDINGS The current inability to initiate spermatogenesis in vitro from cryopreserved human testicular fragments should be included in the counselling of patients who are offered testicular tissue cryopreservation to preserve fertility. STUDY FUNDING/COMPETING INTEREST(S) This project was funded by EU-FP7-PEOPLE-2013-ITN 603568 `Growsperm’. None of the authors have competing interests. TRIAL REGISTRATION NUMBER Not applicable.
STUDY QUESTIONIs testicular transplantation of in vitro propagated spermatogonial stem cells associated with increased cancer incidence and decreased survival rates in recipient mice?SUMMARY ANSWERCancer incidence was not increased and long-term survival rate was not altered after transplantation of in vitro propagated murine spermatogonial stem cells (SSCs) in busulfan-treated recipients as compared to non-transplanted busulfan-treated controls.WHAT IS KNOWN ALREADYSpermatogonial stem cell autotransplantation (SSCT) is a promising experimental reproductive technique currently under development to restore fertility in male childhood cancer survivors. Most preclinical studies have focused on the proof-of-principle of the functionality and efficiency of this technique. The long-term health of recipients of SSCT has not been studied systematically.STUDY DESIGN, SIZE, DURATIONThis study was designed as a murine equivalent of a clinical prospective study design. Long-term follow-up was performed for mice who received a busulfan treatment followed by either an intratesticular transplantation of in vitro propagated enhanced green fluorescent protein (eGFP) positive SSCs (cases, n = 34) or no transplantation (control, n = 37). Using a power calculation, we estimated that 36 animals per group would be sufficient to provide an 80% power and with a 5% level of significance to demonstrate a 25% increase in cancer incidence in the transplanted group. The survival rate and cancer incidence was investigated until the age of 18 months.PARTICIPANTS/MATERIALS, SETTING, METHODSNeonatal male B6D2F1 actin-eGFP transgenic mouse testis were used to initiate eGFP positive germline stem (GS) cell culture, which harbor SSCs. Six-week old male C57BL/6 J mice received a single dose busulfan treatment to deplete the testis from endogenous spermatogenesis. Half of these mice received a testicular transplantation of cultured eGFP positive GS cells, while the remainder of mice served as a control group. Mice were followed up until the age of 18 months (497–517 days post-busulfan) or sacrificed earlier due to severe discomfort or illness. Survival data were collected. To evaluate cancer incidence a necropsy was performed and tissues were collected. eGFP signal in transplanted testis and in benign and malignant lesions was assessed by standard PCR.MAIN RESULTS AND THE ROLE OF CHANCEWe found 9% (95% CI: 2–25%) malignancies in the transplanted busulfan-treated animals compared to 26% (95% CI: 14–45%) in the busulfan-treated control group, indicating no statistically significant difference in incidence of malignant lesions in transplanted and control mice (OR: 0.3, 95% CI: 0.1–1.1). Furthermore, none of the malignancies that arose in the transplanted animals contained eGFP signal, suggesting that they are not derived from the in vitro propagated transplanted SSCs. Mean survival time after busulfan treatment was found to be equal, with a mean survival time for transplanted animals of 478 days and 437 days for control animals (P = 0.076).LARGE...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.