Radiotherapy is a primary treatment modality for glioblastomas (GBM). Because DNA-PKcs is a critical factor in the repair of radiation-induced double strand breaks (DSB), this study evaluated the potential of VX-984, a new DNA-PKcs inhibitor, to enhance the radiosensitivity of GBM cells. Treatment of the established GBM cell line U251 and the GBM stem-like cell (GSC) line NSC11 with VX-984 under conditions resulted in a concentration-dependent inhibition of radiation-induced DNA-PKcs phosphorylation. In a similar concentration-dependent manner, VX-984 treatment enhanced the radiosensitivity of each GBM cell line as defined by clonogenic analysis. As determined by γH2AX expression and neutral comet analyses, VX-984 inhibited the repair of radiation-induced DNA double-strand break in U251 and NSC11 GBM cells, suggesting that the VX-984-induced radiosensitization is mediated by an inhibition of DNA repair. Extending these results to an model, treatment of mice with VX-984 inhibited radiation-induced DNA-PKcs phosphorylation in orthotopic brain tumor xenografts, indicating that this compound crosses the blood-brain tumor barrier at sufficient concentrations. For mice bearing U251 or NSC11 brain tumors, VX-984 treatment alone had no significant effect on overall survival; radiation alone increased survival. The survival of mice receiving the combination protocol was significantly increased as compared with control and as compared with radiation alone. These results indicate that VX-984 enhances the radiosensitivity of brain tumor xenografts and suggest that it may be of benefit in the therapeutic management of GBM. .
BackgroundThe epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer progression and may promote resistance to therapy. An analysis of patients (n = 71) profiled with both gene expression and a global microRNA assessment (∼415 miRs) identified miR-147 as highly anti-correlated with an EMT gene expression signature score and postulated to reverse EMT (MET).Methods and FindingsmiR-147 was transfected into colon cancer cells (HCT116, SW480) as well as lung cancer cells (A-549). The cells were assessed for morphological changes, and evaluated for effects on invasion, motility, and the expression of key EMT markers. Resistance to chemotherapy was evaluated by treating cells with gefitinib, an EGFR inhibitor. The downstream genes regulated by miR-147 were assayed using the Affymetrix GeneChip U133 Plus2.0 platform. miR-147 was identified to: 1. cause MET primarily by increasing the expression of CDH1 and decreasing that of ZEB1; 2. inhibit the invasion and motility of cells; 3. cause G1 arrest by up-regulating p27 and down-regulating cyclin D1. miR-147 also dramatically reversed the native drug resistance of the colon cancer cell line HCT116 to gefitinib. miR-147 significantly repressed Akt phosphorylation, and knockdown of Akt with siRNA induced MET. The morphologic effects of miR-147 on cells appear to be attenuated by TGF-B1, promoting a plastic and reversible transition between MET and EMT.ConclusionmiR-147 induced cancer cells to undergo MET and induced cell cycle arrest, suggesting a potential tumor suppressor role. miR-147 strikingly increased the sensitivity to EGFR inhibitor, gefitinib in cell with native resistance. We conclude that miR-147 might have therapeutic potential given its ability to inhibit proliferation, induce MET, as well as reverse drug sensitivity.
The Notch signaling pathway plays a significant role in differentiation, proliferation, apoptosis, and stem cell processes. It is essential for maintenance of the normal colon crypt and has been implicated in colorectal cancer oncogenesis. Downregulation of the Notch pathway through gamma-secretase inhibitors (GSIs) has been shown to induce apoptosis and enhance response to chemotherapy in a variety of malignancies. In this study, we analyzed the effect of MRK-003 (Merck), a potent inhibitor of gamma-secretase, on oxaliplatin-induced apoptosis in colon cancer. Unexpectedly, gamma-secretase inhibition reduced oxaliplatin-induced apoptosis while GSI treatment alone was shown to have no effect on growth or apoptosis. We determined that the underlying mechanism of action involved an increase in protein levels of the anti-apoptotic Bcl-2 family members Mcl-1 and/or Bcl-xL which resulted in reduced Bax and Bak activation. Blocking of Mcl-1 and/or Bcl-xL through siRNA or the small molecule inhibitor obatoclax restored the apoptotic potential of cells treated with both oxaliplatin and MRK-003. Moreover, obatoclax synergized with MRK-003 alone to induce apoptosis. Our findings warrant caution when treating colon cancer with the combination of GSIs and chemotherapy, whereas other drug combinations, such as GSIs plus obatoclax, should be explored.
In an effort to identify novel components of the PHO regulon in Saccharomyces cerevisiae, we have isolated and characterized suppressors of the Pho ؊ phenotype associated with deletion of the Pho4 transcriptional activator. Here we report that either a defective form of the Rsp5 E3 ubiquitin ligase or deletion of the End3 component of the endocytic pathway restores growth of the pho4⌬ mutant in the presence of limiting inorganic phosphate (P i ). The spa1-1 suppressor allele of RSP5 encodes a phenylalanine-to-valine replacement at position 748 (F748V) within the catalytic HECT domain of Rsp5. Consistent with suppression due to impaired ubiquitin ligase activity, the heat-sensitive growth defect of the spa1-1 mutant is suppressed either by overexpression of ubiquitin or by osmotic stabilization. Western blot analyses revealed that the cellular levels of the Pho87 and Pho91 low affinity P i are markedly increased in the spa1-1 mutant, yet Pho84 high affinity P i transporter levels are unaffected. Furthermore, Pho87 and Pho91 are ubiquitinated in vivo in an Rsp5-dependent manner, and the Pho ؉ phenotype of the spa1-1 suppressor is dependent upon Pho87 and Pho91. We conclude that turnover of the low affinity P i transporters is initiated by Rsp5-mediated ubiquitination followed by internalization and degradation by the endocytic pathway.The yeast Saccharomyces cerevisiae has evolved an elaborate system to sense, acquire, and store inorganic phosphate (P i ) in response to its availability in the extracellular environment (for review, see Refs. 1 and 2). The PHO system consists of (i) the Pho3, Pho5, Pho11, and Pho12 acid phosphatases that are localized to the periplasmic space, (ii) the Pho8 and Pho13 alkaline phosphatases that are localized to the vacuole and periplasm, respectively, (iii) the high affinity plasma membrane P i transporters Pho84 and Pho89, which are regulated in response to P i availability, and the low affinity, constitutively expressed P i transporters Pho87, Pho90, and Pho91, (iv) Git1, a transporter that scavenges glycerophosphoinositol derived from secreted phosphatidylinositol, thereby replenishing inositol, P i , and glycerol (3), and (v) the PHM proteins that are involved in the synthesis and breakdown of polyphosphate, a storage form of P i in the vacuole (for review, see Ref. 4).The PHO regulon is responsible for scavenging P i and has been most extensively studied with regard to regulation of PHO5 expression. The Pho84 transporter and the Pho80 -Pho85 cyclin/cyclin-dependent kinase are negative regulators of PHO5 transcription, whereas the Pho81 inhibitor of Pho80 -Pho85 and the Pho4 transcriptional activator are positive regulators. In the presence of high external concentrations of P i , Pho85 phosphorylates Pho4, resulting in Pho4 nuclear export via the Msn5 exportin and cytoplasmic retention such that PHO5 is repressed (5). Conversely, when P i concentrations are low, Pho81 inhibits Pho85 activity. Pho4 remains unphosphorylated and has high affinity for the Pse1 importin, resulting i...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.