In this paper we present an alternative strategy to define zoning for handwriting recognition, which is based on nonsymmetrical perceptual zoning. The idea is to extract some knowledge from the confusion matrices in order to make the zoning process less empirical. The feature set considered in this work is based on concavities/convexities deficiencies, which are obtained by labeling the background pixels of the input image. To better assess the nonsymmetrical zoning we carried out experiments using four different zonings strategies. Experiments show that the nonsymmetrical zoning could be considered as a tool to build more reliable handwriting recognition systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.