The p-state clock model in two dimensions is a system of discrete rotors with a quasiliquid phase in a region T1
Based on the Kosterlitz-Thouless-Halperin-Nelson-Young theory of two-dimensional melting and the analogy between Laughlin states and the two-dimensional one-component plasma, we investigate the possibility of liquid crystalline states in a single Landau level ͑LL͒. We introduce many-body trial wave functions that are translationally invariant but possess twofold ͑i.e., nematic͒, fourfold ͑tetratic͒, or sixfold ͑hexatic͒ broken rotational symmetry at respective filling factors ϭ1/3, 1/5, and 1/7 of the valence LL. We find that the above liquid crystalline states exhibit a soft charge-density wave ͑CDW͒ which underlies the translationally invariant state but which is destroyed by quantum fluctuations. By means of Monte Carlo simulations, we determine that, for a considerable variety of interaction potentials, the anisotropic states are energetically unfavorable for the lowest and first excited LL's ͑with index Lϭ0,1), whereas the nematic is favorable at the second excited LL (Lϭ2).
Periodic boundary conditions have no unique implementation in magnetic systems where all spins interact with each other through a power law decaying interaction of the form 1/rα, r being the distance between spins. In this work we present a comparative study of the finite size effects oberved in numerical simulations by using first image and infinite image periodic boundary conditions in one- and two-dimensional spin systems with those interactions, including the ferromagnetic, anti-ferromagnetic and competitive interaction cases. Our results show no significative differences between the finite size effects produced by both boundary conditions when the low temperature phase has zero global magnetization, and it depends on the ratio α/d for systems with a low temperature ferromagnetic phase. In the last case the first image convention gives more stronger finite size effects than the other when the system enters into the classical regime α/d≤3/2.
An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for nextgeneration clean automobiles. The carbons are produced in a multi-step process from corncob, have surface areas of up to 3500 m 2 /g, porosities of up to 0.8, and reversibly store, by physisorption, record amounts of methane and hydrogen. Current best gravimetric and volumetric storage capacities are: 250 g CH 4 /kg carbon and 130 g CH 4 /liter carbon (199 V/V) at 35 bar and 293 K; and 80 g H 2 /kg carbon and 47 g H 2 /liter carbon at 47 bar and 77 K. This is the first time the DOE methane storage target of 180 V/V at 35 bar and ambient temperature has been reached and exceeded. The hydrogen values compare favorably with the 2010 DOE targets for hydrogen, excluding cryogenic components. A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths produced accordingly and currently undergoing a road test in Kansas City, is described. A preliminary analysis of the surface and pore structure is given that may shed light on the mechanisms leading to the extraordinary storage capacities of these materials. The analysis includes pore-size distributions from nitrogen adsorption isotherms; spatial organization of pores across the entire solid from small-angle x-ray scattering (SAXS); pore entrances from scanning electron microscopy (SEM) and transmission electron microscopy (TEM); H 2 binding energies from temperature-programmed desorption (TPD); and analysis of surface defects from Raman spectra. For future materials, expected to have higher H 2 binding energies via appropriate surface functionalization, preliminary projections of H 2 storage capacities based on molecular dynamics simulations of adsorption of H 2 on graphite, are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.