CFR-PEEK (carbon fiber reforced-poly ether ether ketone) has been demonstrated to be excellent substitute titanium in orthopedic applications and can be manufactured with many physical, mechanical, and surface properties, in several shapes. The aim of this study was to compare, using the three-dimensional finite element method, the stress distribution in the peri-implant support bone of distinct models composed of PEEK components and implants reinforced with 30% carbon fiber (30% CFR-PEEK) or titanium. In simulations with a perfect bonding between the bone and the implant, the 30% CFR-PEEK presented higher stress concentration in the implant neck and the adjacent bone, due to the decreased stiffness and higher deformation in relation to the titanium. However, 30% CFR-PEEK implants and components did not exhibit any advantages in relation to the stress distribution compared to the titanium implants and components.
Bone allograft has become an alternative to autogenous bone due to its decreased operative trauma and the almost unlimited supply of reconstructive material. The aim of the present study was to histologically evaluate the suitability of fresh-frozen bone graft (test group) used in maxillary ridge augmentation, comparing it to autogenous bone (native maxilla: control group). During the re-entry procedures, 9 months after the fresh-frozen allogeneic bone blocks were placed in the atrophic maxillary ridges, bone cores were removed with a trephine bur from test and control treatments in the same patient. Routine histologic processing using hematoxylin and eosin and Picrosirius staining was performed. Mature and immature collagen area and density analysis were carried out for both groups under polarization. The results of Student's t test for paired samples (P > .05) showed no statistically significant difference in mature and immature collagen area or density percentage between test and control groups. Histologically similar bone formation patterns were observed in both groups. We concluded that fresh-frozen bone allograft is a biologically acceptable alternative for augmentation of the deficient alveolar ridge, showing a similar collagen pattern to that of autogenous bone.
Objectives: Surgical removal of third molars is a regular surgical procedure, which like all operations, may have complications. The purpose of the study was to analyze the incidence of complications and their relationship with the surgical difficulty in a group of 588 patients treated by the same oral and maxillofacial surgeon. Study design: This retrospective cohort study consisted of 1699 third molars (M3) removed between 2005 and 2008. The teeth were grouped into a 6-class scale of surgical difficulty rated according to the surgical procedure description in the patient's file: I: upper M3 requiring forceps only; II: upper M3 requiring osteotomy; III: upper M3 requiring osteotomy and tooth section; IV: lower M3 requiring forceps only; V: lower M3 requiring osteotomy; VI: lower M3 requiring osteotomy and tooth section. The complications were grouped into each surgical difficulty class and their incidence and management were also described. Results: 59 complications (3.47%), including pain, root tip fracture, paresthesia, alveolar osteitis, temporomandibular joint discomfort, and oroantral fistula were reported. Surgical difficulty class VI presented the higher incidence of complications (n=38). Conclusions: The risk of complications in third molar surgery will always exist and increases in proportion to the surgical difficulty. Mandibular M3 requiring osteotomy and tooth section have the highest risk of complications.
The effects of 1α,25 dihydroxyvitamin D3 (1,25D) on breast carcinoma associated fibroblasts (CAFs) are still unknown. This study aimed to identify genes whose expression was altered after 1,25D treatment in CAFs and matched adjacent normal mammary associated fibroblasts (NAFs). CAFs and NAFs (from 5 patients) were cultured with or without (control) 1,25D 100 nM. Both CAF and NAF expressed vitamin D receptor (VDR) and 1,25D induction of the genomic pathway was detected through up-regulation of the target gene CYP24A1. Microarray analysis showed that despite presenting 50% of overlapping genes, CAFs and NAFs exhibited distinct transcriptional profiles after 1,25D treatment (FDR<0.05). Functional analysis revealed that in CAFs, genes associated with proliferation (NRG1, WNT5A, PDGFC) were down regulated and those involved in immune modulation (NFKBIA, TREM-1) were up regulated, consistent with anti tumor activities of 1,25D in breast cancer. In NAFs, a distinct subset of genes was induced by 1,25D, involved in anti apoptosis, detoxification, antibacterial defense system and protection against oxidative stress, which may limit carcinogenesis. Co-expression network and interactome analysis of genes commonly regulated by 1,25D in NAFs and CAFs revealed differences in their co-expression values, suggesting that 1,25D effects in NAFs are distinct from those triggered in CAFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.