Light-based 3D printing techniques could be a valuable instrument in the development of customized and affordable biomedical devices, basically for high precision and high flexibility in terms of materials of these technologies. However, more studies related to the biocompatibility of the printed objects are required to expand the use of these techniques in the health sector. In this work, 3D printed polymeric parts are produced in lab conditions using a commercial Digital Light Processing (DLP) 3D printer and then successfully tested to fabricate components suitable for biological studies. For this purpose, different 3D printable formulations based on commercially available resins are compared. The biocompatibility of the 3D printed objects toward A549 cell line is investigated by adjusting the composition of the resins and optimizing post-printing protocols; those include washing in common solvents and UV post-curing treatments for removing unreacted and cytotoxic products. It is noteworthy that not only the selection of suitable materials but also the development of an adequate post-printing protocol is necessary for the development of biocompatible devices.
In the present study, a different approach for the preparation of poly(ethylene glycol) diacrylate-gelatin (PEGDA-gelatin) hydrogels was investigated. Gelatin type A from porcine skin was used as the co-initiator of a radical photo-initiating system instead of the traditional aliphatic or aromatic amines. This became possible because, upon visible-light irradiation, the amine sequences within gelatin generate initiating free-radicals through the intermolecular proton transfer in a Norrish type II reaction with camphorquinone (CQ). PEGDA-gelatin hydrogels were prepared by visible-light-induced photopolymerization. The gelatin content in the precursor formulations was varied. The influence of gelatin on the kinetics of the photocuring reaction was investigated, and it was found that gelatin fastened the rate of polymerization at all concentrations. The covalent attachment of gelatin segments within the cross-linked hydrogels was evaluated by means of attenuated total reflectance-infrared spectroscopy (ATR-FTIR) spectroscopy after solvent extraction. The thermo-mechanical properties, as well as the swelling behavior and gel content, were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.