Ever tighter restrictions on pollutant emissions, energy security and a continuous drive for improving fuel economy have extended the range of application for direct injection in spark ignition engines and promoted the use of alternative fuels. Direct injection features higher soot formation compared to external mixture preparation, and therefore, intensive research is performed for understanding the processes related to this pollutant category. This study looked into the effect of injection timing in a wall-guided direct injection spark ignition engine when gasoline was completely replaced with n-butanol. Thermodynamic measurements were coupled with optical investigations that provided improved insight into local distribution of diffusive flames during late combustion stages. These data were correlated with exhaust gas measurements of CO, HC and NOx, as well as opacity. The optimum setting for injection timing was found to be a compromise between intake airflow velocity and piston positioning that influenced wall impingement. Late injection resulted in reduced soot but higher HC emissions, as well as lower performance compared to the optimum point. Early fuel delivery had roughly the same effect on indicated mean effective pressure and stability, with the downside of increased opacity. These observations were detailed with data obtained through cycle-resolved imaging that showed different integral luminosities with respect to injection phasing and confirmed that fuel impingement on the piston crown is the main factor of influence for soot formation. Ultraviolet-visible spectroscopy in the late combustion phase was also applied in repetitive mode in order to provide better insight into cyclic variability of the emission intensity in the range specific for carbonaceous structures.
The occurrence of knock is the most limiting hindrance for modern Spark-Ignition (SI) engines. In order to understand its origin and move the operating condition as close as possible to onset of this potentially harmful phenomenon, a joint experimental and numerical investigation is the most recommended approach. A preliminary experimental activity was carried out at IM-CNR on a 0.4 liter GDI unit, equipped with a flat transparent piston. The analysis of flame front morphology allowed to correlate high levels of flame front wrinkling and negative curvature to knock prone operating conditions, such as increased spark timings or high levels of exhaust back-pressure. In this study a detailed CFD analysis is carried out for the same engine and operating point as the experiments. The aim of this activity is to deeper investigate the reasons behind the main outcomes of the experimental campaign. A tabulated knock model is presented, based on detailed chemical mechanism for the surrogate gasoline. Combustion and knock simulations are carried out in a RANS framework through the use of validated models and the results are compared with cycle-resolved acquisition from the test-bed. The results of the CFD analysis explain the experimentally observed flame behavior and allow to proficiently understand the reasons of the sensitivity to knock of the analyzed uni
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.