Abstract:The main goal of this paper is to study the effect of the spatio-temporal changes of Land Use/Land Cover (LULC) within the hydrologic regime of the Cervaro basin in Southern Italy. LANDSAT Thematic Mapper (TM) imagery acquisition dates from 1984, 2003, 2009, and 2011 were selected to produce LULC maps covering a time trend of 28 years. Nine synthetic bands were processed as input data identified as the most effective for the Artificial Neural Network (ANN) classification procedure implemented in this case study. To assess the possible hydrological effects of the detected changes during rainfall events, a physically-based lumped approach for infiltration contribution was adopted within each sub-basin. The results showed an increase in flood peak and a decrease of the rangelands, forests, and bare lands between 1984 and 2011, indicating a good correlation between flooding areas and land use changes, even if it can be considered negligible in basins of large dimensions. These results showed that the impact of land use on the hydrological response is closely related to watershed scale.
Devastating floods are observed every year globally from upstream mountainous to coastal regions. Increasing flood frequency and impacts affect both major rivers and their tributaries. Nonetheless, at the small-scale, the lack of distributed topographic and hydrologic data determines tributaries to be often missing in inundation modeling and mapping studies. Advances in Unmanned Aerial Vehicle (UAV) technologies and Digital Elevation Models (DEM)-based hydrologic modeling can address this crucial knowledge gap. UAVs provide very high resolution and accurate DEMs with low surveying cost and time, as compared to DEMs obtained by Light Detection and Ranging (LiDAR), satellite, or GPS field campaigns. In this work, we selected a LiDAR DEM as a benchmark for comparing the performances of a UAV and a nation-scale high-resolution DEM (TINITALY) in representing floodplain topography for flood simulations. The different DEMs were processed to provide inputs to a hydrologic-hydraulic modeling chain, including the DEM-based EBA4SUB (Event-Based Approach for Small and Ungauged Basins) hydrologic modeling framework for design hydrograph estimation in ungauged basins; the 2D hydraulic model FLO-2D for flood wave routing and hazard mapping. The results of this research provided quantitative analyses, demonstrating the consistent performances of the UAV-derived DEM in supporting affordable distributed flood extension and depth simulations.
Abstract:One of the main issues arising during the rapid filling of a pipeline is the pressure transient which originates after the entrapped air has been expelled at the air release valve. Because of the difference in density between water and air, a pressure transient originates at the impact of the water column. Many authors have analyzed the problem, both from the theoretical and the experimental standpoint. Nevertheless, mainly vertical or horizontal pipelines have been analyzed, whereas in real field applications, the pipe profile is a sequence of ascending and descending pipes, with air release/vacuum valves at high points. To overcome lack of knowledge regarding this latter case, laboratory experiments were carried out to simulate the filling of an undulating pipeline, initially empty at atmospheric pressure. The pipe profile has a high point where an orifice is installed for air venting, so as to simulate the air release valve at intermediate high point of a supply pipeline. In the experiments, the diameter of the orifice and the opening degree of both upstream and downstream valves were varied, in order to analyze their effect on the pressure transient. The experiments were also carried out with a longer descending pipe, in order to assess the effects on the pressure surge of the air volume downstream of the orifice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.