Background: The progressive aging of populations, primarily in the industrialized western world, is accompanied by the increased incidence of several non-transmittable diseases, including neurodegenerative diseases and adult-onset dementia disorders. To stimulate adequate interventions, including treatment and preventive measures, an early, accurate diagnosis is necessary. Conventional magnetic resonance imaging (MRI) represents a technique quite common for the diagnosis of neurological disorders. Increasing evidence indicates that the association of artificial intelligence (AI) approaches with MRI is particularly useful for improving the diagnostic accuracy of different dementia types. Objectives: In this work, we have systematically reviewed the characteristics of AI algorithms in the early detection of adult-onset dementia disorders, and also discussed its performance metrics. Methods: A document search was conducted with three databases, namely PubMed (Medline), Web of Science, and Scopus. The search was limited to the articles published after 2006 and in English only. The screening of the articles was performed using quality criteria based on the Newcastle–Ottawa Scale (NOS) rating. Only papers with an NOS score 7 were considered for further review. Results: The document search produced a count of 1876 articles and, because of duplication, 1195 papers were not considered. Multiple screenings were performed to assess quality criteria, which yielded 29 studies. All the selected articles were further grouped based on different attributes, including study type, type of AI model used in the identification of dementia, performance metrics, and data type. Conclusions: The most common adult-onset dementia disorders occurring were Alzheimer’s disease and vascular dementia. AI techniques associated with MRI resulted in increased diagnostic accuracy ranging from 73.3% to 99%. These findings suggest that AI should be associated with conventional MRI techniques to obtain a precise and early diagnosis of dementia disorders occurring in old age.
As a chronic and life-threatening disease, Parkinson's disease (PD) causes people to become rigid, inactive, and have shaky voices. There is an argument that current PD detection techniques are ineffective due to their high latency and low accuracy. To enhance the accuracy of PD identification, voice recordings were used as biomarkers in conjunction with the synthetic minority oversampling technique (SMOTE). Three machine learning (ML) models namely support vector machine (SVM), K-nearest neighbors (KNN), and Random Forest (RF) was adopted to calculate the prediction accuracy. By applying an unsupervised dimensional reduction method, the generated model eliminates redundant data and speeds up training and testing. Model performance is estimated with three parameters including accuracy, F1 score, and area under the curve (AUC) values. Experimental outcomes suggested that the RF model outperforms other models with 97.4% of classification accuracy. This type of research aims to analyse patient voice recordings to determine the disease severity.
The increasing incidence of adult-onset dementia disorders and primarily Alzheimer’s disease (AD) among the aging population around the world is increasing the social and economic burden on society and healthcare systems. This paper presents three neural networking algorithms: MobileNet, Artificial Neural Networks (ANN), and DenseNet for AD classification based on MRI imaging data. The results of each model were compared in terms of performance metrics such as accuracy, true positive rate, and receiver operating curve values. Results mentioned that MNet classified AD progression with 95.41% of accuracy. Early detection and appropriate interventions, primarily on modifiable risk factors of AD, can delay the progression of cognitive impairment and other symptoms that represent a main trait of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.