Background: Till 31 March 2020, 105,792 COVID-19 cases were confirmed in Italy including 15,726 deaths which explains how worst the epidemic has affected the country. After the announcement of lockdown in Italy on 9 March 2020, situation was becoming stable since last days of March. In view of this, it is important to forecast the COVID-19 evaluation of Italy condition and the possible effects, if this lock down could continue for another 60 days. Methods: COVID-19 infected patient data has extracted from the Italian Health Ministry website includes registered and recovered cases from mid February to end March. Adoption of seasonal ARIMA forecasting package with R statistical model was done. Results: Predictions were done with 93.75% of accuracy for registered case models and 84.4% of accuracy for recovered case models. The forecasting of infected patients could be reach the value of 182,757, and recovered cases could be registered value of 81,635 at end of May. Conclusions: This study highlights the importance of country lockdown and self isolation in control the disease transmissibility among Italian population through data driven model analysis. Our findings suggest that nearly 35% decrement of registered cases and 66% growth of recovered cases will be possible.
1. Increasing evidence indicates the occurrence of functional interconnections between immune and nervous systems, although data available on the mechanisms of this bi-directional cross-talking are frequently incomplete and not always focussed on their relevance for neuroimmune modulation. 2. Primary (bone marrow and thymus) and secondary (spleen and lymph nodes) lymphoid organs are supplied with an autonomic (mainly sympathetic) efferent innervation and with an afferent sensory innervation. Anatomical studies have revealed origin, pattern of distribution and targets of nerve fibre populations supplying lymphoid organs. 3. Classic (catecholamines and acetylcholine) and peptide transmitters of neural and non-neural origin are released in the lymphoid microenvironment and contribute to neuroimmune modulation. Neuropeptide Y, substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide represent the neuropeptides most involved in neuroimmune modulation. 4. Immune cells and immune organs express specific receptors for (neuro)transmitters. These receptors have been shown to respond in vivo and/or in vitro to the neural substances and their manipulation can alter immune responses. Changes in immune function can also influence the distribution of nerves and the expression of neural receptors in lymphoid organs. 5. Data on different populations of nerve fibres supplying immune organs and their role in providing a link between nervous and immune systems are reviewed. Anatomical connections between nervous and immune systems represent the structural support of the complex network of immune responses. A detailed knowledge of interactions between nervous and immune systems may represent an important basis for the development of strategies for treating pathologies in which altered neuroimmune cross-talking may be involved.
LA has pleiotropic effects in different pathways related with several diseases, its use as a potential therapeutic agent is very promising.
Neurotrophins (NTs) promote survival and differentiation of central and peripheral neurons, and display several activities also in non-neuronal cells. Human lungs synthesize and release NTs, which are probably involved in the pathophysiology of pulmonary disturbances. In this article the expression and anatomic localization of nerve growth factor, brain-derived neurotrophic factor, and NT-3 and of corresponding high-affinity receptors TrkA, TrkB (full-length and truncated [TR-] isoforms), TrkC, and of the low-affinity p75 receptor, were assessed in surgical samples from adult human lung by reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. NTs and their cognate receptor mRNA and protein transcripts were detected by reverse transcriptase-polymerase chain reaction and immunoblotting, respectively, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) mRNA and corresponding protein transcripts being the most expressed. High levels of TrkB-[TR-] mRNA and of its protein transcript were also demonstrated, whereas a low expression of p75 mRNA and of corresponding protein transcript were found. Microanatomic analysis of immunohistochemical study revealed that bronchial epithelial cells were immunoreactive for different NTs, with a higher intensity of BDNF immune staining compared with other NTs, but did not express NT receptor immunoreactivity. Alveolar cells were immunoreactive for TrkA and TrkC receptor protein, but did not display immunoreactivity for NTs or other receptors investigated. Gland cells expressed NT and high-affinity NT receptor immunoreactivity, but not p75 receptor immunoreactivity. NT and low-affinity receptor immunoreactivity was observed within neurons and satellite cells of parasympathetic ganglia as well as in nerve fiber-like structures supplying the bronchopulmonary tree. An obvious immunoreactivity for NTs and NT receptor protein was also observed in intrapulmonary branches of pulmonary artery. Pulmonary lymphocytes and macrophages express nerve growth factor and high-affinity NT receptor immunoreactivity. The role of NTs in non-neuronal tissue including lung has not been clarified yet. The widespread expression of NTs and their receptors in different components of the lung suggests that these factors may contribute to regulate cell function in human lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.