We propose an active plasmonic device based on graphene. Highly confined plasmonic waves in monolayer graphene are efficiently excited using an etched diffractive grating on silicon. The guided-wave resonance of the combined structure creates a sharp notch on the normal-incidence transmission spectra, as the incident optical wave couples to the graphene plasmonic wave. This structure can be used as a highly tunable optical filter or a broad-band modulator because the resonant wavelength can be quickly tuned over a wide wavelength range by a small change in the Fermi energy level of the graphene. In this paper, we analyze the performance of this device with finite-difference time-domain simulations. We compare the proposed structure with recently demonstrated graphene nanoribbons based on bound plasmonic oscillations.
The gate-controllability of the Fermi-edge onset of interband absorption in graphene can be utilized to modulate near-infrared radiation in the telecommunication band. However, a high modulation efficiency has not been demonstrated to date, because of the small amount of light absorption in graphene. Here, we demonstrate a ~40% amplitude modulation of 1.55 µm radiation with gated single-layer graphene that is coupled with a silicon micro-ring resonator. Both the quality factor and resonance wavelength of the silicon micro-ring resonator were strongly modulated through gate tuning of the Fermi level in graphene.These results promise an efficient electro-optic modulator, ideal for applications in large-scale on-chip optical interconnects that are compatible with complementary metal-oxide-semiconductor technology.
Silicon photonics has attracted tremendous interest from academia and industry, as the fabrication of the silicon family of photonic devices is mostly compatible with the microelectronics process using complementary metal‐oxide semiconductors (CMOS). Herein, three silicon‐family materials are discussed: silicon, silicon nitride, and silica. In addition, hybrid integration with a 2D material, graphene, is examined. First, the material and waveguide properties are reviewed. Second, typical fabrication processes for waveguide devices are introduced. Subsequently, a variety of passive waveguide devices, operating at different physical dimensions covering wavelength, polarization, and mode, are discussed. They correspond to fixed and tunable filters, polarization beam splitters and rotators, and mode conversion and multiplexing devices. These passive waveguide devices play important roles in a wide range of applications including telecom, interconnects, computing, sensing, quantum information processing, bio‐photonics, and energy.
We propose and experimentally demonstrate an on-chip all-optical differential-equation solver capable of solving second-order ordinary differential equations (ODEs) characterizing continuous-time linear time-invariant (LTI) systems. The photonic device is implemented by a self-coupled micro-resonator on a silicon-on-insulator (SOI) platform with mutual coupling between the cavity modes. Owing to the mutual mode coupling within the same resonant cavity, the resonance wavelengths induced by different cavity modes are self-aligned, thus avoiding precise wavelength alignment and unequal thermal wavelength drifts as in the case of cascaded resonators. By changing the mutual mode coupling strength, the proposed device can be used to solve second-order ODEs with tunable coefficients. System demonstration using the fabricated device is carried out for 10-Gb/s optical Gaussian and super-Gaussian input pulses. The experimental results are in good agreement with theoretical predictions of the solutions, which verify the feasibility of the fabricated device as a tunable second-order photonic ODE solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.