Most clinical procedures using the laser are based on thermal laser-tissue interactions. The treatment often consists of inducing damage of given degree and extent by heating the tissue. The aim of this study was to develop a model called HELIOS. The ability of HELIOS to predict thermal coagulation was evaluated by comparison with in vivo experimental results. Conversion of laser light in tissue was studied using the beam-broadening model. Temperature was described by the heat conduction equation solved using the finite difference method. The tissue denaturation was modeled by the Henriques equation leading to the determination of the damage coefficient omega. For a given set of laser and tissue parameters, HELIOS makes a graphic representation of coagulation necrosis and temperature evolution in tissue. HELIOS was validated by experimental studies in vivo on rat liver using a CW Nd:YAG laser, a CO2 laser, and an argon laser. For given sets of laser parameters, temperature measurements were performed using an infrared camera. Histological examinations were carried out on samples to quantify the depth of coagulation necrosis. Experimental data obtained in vivo were compared with those calculated using HELIOS and similar sets of parameters. The difference between the predicted temperature evolution on tissue surface and that measured by the infrared camera was < 5 degrees C in all cases. The difference between the predicted coagulation necrosis depth and the corresponding experimental one was < 10%. In conclusion, HELIOS allows good prediction of tissue temperature and coagulation necrosis.
Laser photocoagulation has proven to be valuable in the treatment of port-wine stains. In this application, the minimal blanching technique is used as an indicator of suitable dosage since it has been demonstrated that the immediate appearance a white mark is required to achieve permanent blanching a few months later. The objective of the investigations undertaken in this study was to correlate the temperature attained at the surface of port-wine stains with immediate blanching, upon irradiation with different laser fluences. A comparative study was performed using an argon laser (all lines), a 532 nm Nd:YAG and a 585 nm argon pumped dye laser. Surface temperature was studied using an infrared camera. Temperature was measured on 10 different port-wine stains using different fluences. Whitening threshold fluence was related to surface temperature. It appeared that whitening threshold fluence corresponded to a surface temperature of 53 degrees C (+/- 3 degrees C). The whitening threshold fluence was dependent on port-wine stains and wavelength. However, whitening threshold fluence remained lower for 532 nm and 585 nm and it correlated to the absorption curve of hemoglobin.
Dl:s leur naissance en 1960, les lasers sont apparus comme des sources de lumière potemicllement iméressames pour la m&lecine car elles avaient trois caracltristiques qui les distinguaient des sources conventionnelles: la directivité, la possibilité de fonctionner en modc pulsé, et la monochromaticité. La directivité, c'est 11 dire l'émission sous un fin faisceau parallèle, pennet de transmellre cene lumière (visible, proche infrarouge el proche ullraviolet) 11 l'aide d'une fibre optique de faible section (50 11 600 j.lm), L'émission Fndant des durées très brèves (mode pulsé), de la milliseconde 11 la femtoseconde (JO. 11 JO.lj s), donne des puissances instantanées extrêmemenl élevées qui peuvenl alleindre le gigawatt (1Q'J W), avec des effets tissulaires différems de ceux obtenus avec des lasers à émission eonlinue. L'émission d'une seule longueur d'onde, la monochromaticilé, évite d'avoir 11 fillrer la lumière pour oblenir des effets 5t1cctifs, et donc de perdre de l'énergie. Néanmoins, il faut savoir quc les molécules biologiques ont un spectre d·absorption beaucoup plus large que la raie d'émission d'un laser cl que cette caractéristique si inlportante pour les physiciens ne sera pas pleinement utilisée en thérapeutique.Nous limiterons noIre sujet aux trailements effeclUés sur un malade Cl nous ne parlerons pas des autres applications médicales dcs lasers comme le diagnostic ou les applications in vitro. Il est habituel de classer les applications thérapeutiques des lasers en 4 groupes que l'on nomme, par convenlion de langage, cffetlhemlique, mécanique, photo-ablatif. ct photochimique. Nous allons explicitcr ces effets à l'aide d'exemples de traitements. Les effets thermiques seront plus longuement détaillés que les 3 autres car ils représemem, actuellement, plus des trois quarts des applications thérapeutiques des lasers et surtout parce que notre expérience concerne essentiellement les lasers 11 effets thermiques. Nous donnerons ensuite quelques idées sur le développement futur des lasers. Nous terminerons par un exposé sur notre structure de travail, le Centre des la.<;ers et de l'Optronique de Lille (CLOM). LES EFFETS THERMIQUES DES LASERSLes effets thermiques des lasers sont dus à une conversion de la lumière absorbée en chaleur, qui va diffuser à partir de la ZOlle d'absorplion et provoquer au niveau des tissus une hyperthermie, une nécrose de coagulation OlIune~olatjlisalion.Article disponible sur le site EDP Sciences et disponible sur le site http://sfo.edpsciences.org ou http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.