j Over a 5-month period, four liver transplant patients at a single hospital were diagnosed with Pneumocystis jirovecii pneumonia (PCP). This unusually high incidence was investigated using molecular genotyping. Bronchoalveolar lavage fluids (BALF) obtained from the four liver recipients diagnosed with PCP were processed for multilocus sequence typing (MLST) at three loci (SOD, mt26s, and CYB). Twenty-four other BALF samples, which were positive for P. jirovecii and collected from 24 epidemiologically unrelated patients with clinical signs of PCP, were studied in parallel by use of the same method. Pneumocystis jirovecii isolates from the four liver recipients all had the same genotype, which was different from those of the isolates from all the epidemiologically unrelated individuals studied. These findings supported the hypothesis of a common source of contamination or even cross-transmission of a single P. jirovecii clone between the four liver recipients. Hospitalization mapping showed several possible encounters between these four patients, including outpatient consultations on one particular date when they all possibly met. This study demonstrates the value of molecular genotyping of P. jirovecii isolated from clinical samples for epidemiological investigation of PCP outbreaks. It is also the first description of a common source of exposure to a single P. jirovecii clone between liver transplant recipients and highlights the importance of prophylaxis in such a population.
The biological diagnosis of Pneumocystis jirovecii pneumonia (PjP) is based on the investigation of respiratory fluids by conventional staining methods and/or molecular biology. Diagnostic performance of an in-house technique based on calcofluor-blue brightener for the direct detection of P. jirovecii cysts was prospectively assessed in bronchial-alveolar lavage fluids (BALF) from patients with a suspected PjP infection over a three-year period in a single center: the diagnostic yield was compared to that of a commercial kit based on monoclonal immunofluorescence assay (IFA) on replicate smears. May-Grünwald Giemsa (MGG) staining and quantitative Polymerase Chain Reaction (qPCR) were also performed. The gold standard for each patient was the definitive diagnosis of PjP infection by an independent committee based on clinical, radiological, and biological data. Overall, 481 BALF were assessed: 42 were found to be positive for the detection of P. jirovecii by at least one laboratory technique, but only 35 were actually judged to be in agreement with the definitive diagnosis of PjP infection. The sensitivity of the calcofluor-blue brightener technique was 74.3% vs. 60.0%, 34.6%, and 82.9% for IFA, MGG, and qPCR, respectively; and its specificity was 99.6% vs. 99.3%, 100.0%, and 99.4% for IFA, MGG, and qPCR. No technique was shown to be statistically superior to calcofluor-blue brightener. Further validation of the test through multicenter studies is now required, but in light of its low cost and easy preparation, the use of calcofluor-blue brightener in BALF appears to be a valuable alternative method for the routine first-line diagnosis of PjP infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.