Glutamine has many important functions in mammalian cells, and glutamine transport across cell membranes has accordingly been extensively studied. In the past few years a number of important glutamine transport proteins have been sequenced and their molecular properties have been characterised. In general, four major transporters are important physiologically. These are known as (i) SNAT3 (System N) which is important in glutamine uptake in periportal cells in liver and in across the basolateral membrane of renal proximal tubule cells and is also involved in glutamine release by liver perivenous cells and by astrocytes; a variant of this protein catalyses glutamine release from skeletal muscle. (ii) SNAT1 (a specific System A sub-type) which is important in glutamine uptake by neuronal cells (iii) ASCT2 which is essential for glutamine uptake by rapidly growing epithelial cells and tumour cells in culture and (iv) the recently discovered brush border membrane transporter B0 AT1 (SLC6A19). Recent studies considered both the importance of ASCT2 in tumour cell growth and the regulation of ASCT2 expression. In SK-Hep hepatoma cells, knockdown of ASCT2 using antisense mRNA has been shown to cause apoptosis. Expression of the ASCT2 transporter in HepG2 hepatoma cells is stimulated by glutamine by a pathway involving the promoter element AGGTGAATGACTT which binds FXR/RXR dimers.
Glutamine transport into the human hepatoma cell line HepG2 is catalysed primarily by an ASCT2-type transporter identical in sequence with that cloned previously from JAR cells. An antibody raised against the C-terminus of the ASCT2 protein was shown to recognize ASCT2 on Western blots. Using this antibody, it was found that variation in cell growth rate did not affect ASCT2 expression, but both growth rate and ASCT2 expression were significantly reduced by glutamine deprivation. Expression of a number of other proteins was shown to be unaffected under these conditions. The sequence of the 5'-flanking region of the ASCT2 gene was derived from the human genome database. A 907 bp fragment of this sequence was directionally ligated into a luciferase reporter vector and was shown to exhibit promoter activity when transfected into HepG2 cells. Promoter activity was greatly reduced when transfection was performed in glutamine-free medium and was restored when glutamine was added post-transfection. The absence of other essential amino acids did not affect promoter activity, and glutamine deprivation did not affect the MCT1 (monocarboxylate transporter 1) promoter. These results indicate that both ASCT2 promoter activity and ASCT2 protein expression in these cells are dependent on glutamine availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.