1. The action of the antibiotics enniatin A, valinomycin, the actin homologues, gramicidin, nigericin and dianemycin on mitochondria, erythrocytes and smectic mesophases of lecithin-dicetyl hydrogen phosphate was studied. 2. These antibiotics induced permeability to alkali-metal cations on all three membrane systems. 3. The ion specificity on each membrane system was the same. 4. Enniatin A, valinomycin and the actins did not induce permeability to protons, whereas nigericin and dianemycin rendered all three membrane systems freely permeable to protons. 5. Several differences were noted between permeability induced by nigericin and that induced by gramicidin. 6. The action of all these antibiotics on mitochondrial respiration could be accounted for by changes in passive ion permeability of the mitochondrial membrane similar to those induced in erythrocytes and phospholipid membranes, if it is assumed that a membrane potential is present in respiring mitochondria.The effects of valinomycin on mitochondrial respiration have been investigated extensively
Glutamine has many important functions in mammalian cells, and glutamine transport across cell membranes has accordingly been extensively studied. In the past few years a number of important glutamine transport proteins have been sequenced and their molecular properties have been characterised. In general, four major transporters are important physiologically. These are known as (i) SNAT3 (System N) which is important in glutamine uptake in periportal cells in liver and in across the basolateral membrane of renal proximal tubule cells and is also involved in glutamine release by liver perivenous cells and by astrocytes; a variant of this protein catalyses glutamine release from skeletal muscle. (ii) SNAT1 (a specific System A sub-type) which is important in glutamine uptake by neuronal cells (iii) ASCT2 which is essential for glutamine uptake by rapidly growing epithelial cells and tumour cells in culture and (iv) the recently discovered brush border membrane transporter B0 AT1 (SLC6A19). Recent studies considered both the importance of ASCT2 in tumour cell growth and the regulation of ASCT2 expression. In SK-Hep hepatoma cells, knockdown of ASCT2 using antisense mRNA has been shown to cause apoptosis. Expression of the ASCT2 transporter in HepG2 hepatoma cells is stimulated by glutamine by a pathway involving the promoter element AGGTGAATGACTT which binds FXR/RXR dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.