Hemocompatibility is a critical consideration when designing cardiovascular devices. Methods of assessing hemocompatibility range from in vitro protein adsorption and static platelet attachment to in vivo implantation. A standard preclinical assessment of biomaterial hemocompatibility is ex vivo quantification of thrombosis in a chronic arteriovenous shunt. This technique utilizes flowing blood and quantifies platelet accumulation and fibrin deposition. However, the physical parameters of the thrombus have remained unknown. This study presents the development of a novel method to quantify the 3D physical properties of the thrombus on different biomaterials: expanded polytetrafluoroethylene and a preclinical hydrogel, poly(vinyl alcohol). Tubes of 4–5 mm inner diameter were exposed to non-anticoagulated blood flow for 1 hour and fixed. Due to differences in biomaterial water absorption properties, unique methods, requiring either the thrombus or the lumen to be radiopaque, were developed to quantify average thrombus volume within a graft. The samples were imaged using X-ray microcomputed tomography (microCT). The methodologies were strongly and significantly correlated to caliper-measured graft dimensions (R2 = 0.994, p < 0.0001). The physical characteristics of the thrombi were well correlated to platelet and fibrin deposition. MicroCT scanning and advanced image analyses were successfully applied to quantitatively measure 3D physical parameters of thrombi on cardiovascular biomaterials under flow.
33-year-old female, with learning difficulties and idiopathic epilepsy, (treated with phenytoin and lamotrigine), was admitted with a 24-hour history of drowsiness and urinary frequency. Five days earlier the family doctor had prescribed amoxycillin to treat breathlessness. On examination, the patient was drowsy but responsive (Glasgow Coma Scale) [GCS] 13/15), pulse 140/min, ECG: sinus tachycardia, BP 130/80 mmHg, temperature 35.9°C, respiratory rate 30/min with O 2 saturation of 95%. Cardiovascular, respiratory, abdominal and neurological systems were otherwise normal. Diabetic ketoacidosis (DKA) was confirmed (plasma glucose 28 mmol/L, bicarbonate 7 mmol/L, pH 6.98, P CO 2 2.2, sodium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.