SAMHD1 restricts human immunodeficiency virus-1 (HIV-1) infection of dendritic and other myeloid cells at an early stage in the replication cycle. SIVsm/HIV-2 lineage viruses counteract SAMHD1-mediated restriction by encoding Vpx, a virion-packaged accessory protein that targets SAMHD1 for degradation. We show that SAMHD1 restricts HIV-1 infection of monocyte-derived macrophages (MDM) by hydrolyzing the cellular deoxynucleotide triphosphates (dNTP), reducing their level to below that required for the synthesis of the viral genomic DNA. Vpx prevented the SAMHD1-mediated decrease in dNTP. The restriction was partially alleviated in MDM by the addition of exogenous deoxynucleosides. HIV-1 with a V148I mutation in reverse transcriptase that lowers its affinity for dNTP was particularly sensitive to SAMHD1-mediated restriction. Nucleotide starvation could serve as a mechanism to protect cells from infection by a wide variety of infectious agents that replicate through a DNA intermediate.
a b s t r a c tMicroRNAs (miRNAs) are small non-coding RNAs with a central role in the post-transcriptional control of gene expression, that have been implicated in a wide-range of biological processes. Regulation of miRNA expression is increasingly recognized as a crucial part of the host response to infection by bacterial pathogens, as well as a novel molecular strategy exploited by bacteria to manipulate host cell pathways. Here, we review the current knowledge of bacterial pathogens that modulate host miRNA expression, focusing on mammalian host cells, and the implications of miRNA regulation on the outcome of infection. The emerging role of commensal bacteria, as part of the gut microbiota, on host miRNA expression in the presence or absence of bacterial pathogens is also discussed.
Increasing evidence suggests an important role for miRNAs in the molecular interplay\ud
between bacterial pathogens and host cells. Here we perform a fluorescence microscopybased\ud
screen using a library of miRNA mimics and demonstrate that miRNAs modulate\ud
Salmonella infection. Several members of the miR-15 miRNA family were among the\ud
17 miRNAs that more efficiently inhibit Salmonella infection. We discovered that these\ud
miRNAs are downregulated during Salmonella infection, through the inhibition of the\ud
transcription factor E2F1. Analysis of miR-15 family targets revealed that derepression of\ud
cyclin D1 and the consequent promotion of G1/S transition are crucial for Salmonella\ud
intracellular proliferation. In addition, Salmonella induces G2/M cell cycle arrest in infected\ud
cells, further promoting its replication. Overall, these findings uncover a mechanism whereby\ud
Salmonella renders host cells more susceptible to infection by controlling cell cycle\ud
progression through the active modulation of host cell miRNAs
HIV viruses encode a set of accessory proteins, which are important determinants of virulence due to their ability to manipulate the host cell physiology for the benefit of the virus. Although these viral proteins are dispensable for viral growth in many in vitro cell culture systems, they influence the efficiency of viral replication in certain cell types. Macrophages are early targets of HIV infection which play a major role in viral dissemination and persistence in the organism. This review focuses on two HIV accessory proteins whose functions might be more specifically related to macrophage infection: Vpr, which is conserved across primate lentiviruses including HIV-1 and HIV-2, and Vpx, a protein genetically related to Vpr, which is unique to HIV-2 and a subset of simian lentiviruses. Recent studies suggest that both Vpr and Vpx exploit the host ubiquitination machinery in order to inactivate specific cellular proteins. We review here why it remains difficult to decipher the role of Vpr in macrophage infection by HIV-1 and how recent data underscore the ability of Vpx to antagonize a restriction factor which counteracts synthesis of viral DNA in monocytic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.