Familial amyotrophic lateral sclerosis (FALS) is caused, in 20% of cases, by mutations in the Cu/Zn superoxide dismutase gene (SOD1). Although motor neuron injury occurs through a toxic gain of function, the precise mechanism(s) remains unclear. Using an established NSC34 cellular model for SOD1-associated FALS, we investigated the effects of mutant SOD1 specifically in cells modelling the vulnerable cell population, the motor neurons, without contamination from non-neuronal cells present in CNS. Using gene expression profiling, 268 transcripts were differentially expressed in the presence of mutant human G93A SOD1. Of these, 197 were decreased, demonstrating that the presence of mutant SOD1 leads to a marked degree of transcriptional repression. Amongst these were a group of antioxidant response element (ARE) genes encoding phase II detoxifying enzymes and antioxidant response proteins (so-called 'programmed cell life' genes), the expression of which is regulated by the transcription factor NRF2. We provide evidence that dysregulation of Nrf2 and the ARE, coupled with reduced pentose phosphate pathway activity and decreased generation of NADPH, represent significant and hitherto unrecognized components of the toxic gain of function of mutant SOD1. Other genes of interest significantly altered in the presence of mutant SOD1 include several previously implicated in neurodegeneration, as well as genes involved in protein degradation, the immune response, cell death/survival and the heat shock response. Preliminary studies on isolated motor neurons from SOD1-associated motor neuron disease cases suggest key genes are also differently expressed in the human disease.
There is now compelling evidence of mitochondrial dysfunction in motor neuron disease (MND), but the molecular basis of these abnormalities is unknown. It is also unclear whether the observed mitochondrial dysfunction plays a central role in disease pathogenesis, and if so, whether its amelioration might present therapeutic opportunities. We adopted a candidate generation approach using proteomics to screen for changes in mitochondrial protein expression in a well-validated cell-culture model of superoxide dismutase 1 (SOD1) related familial MND (fMND). Changed proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy. Protein candidates included apoptotic regulators, anti-oxidants and components of the electron transport chain. Confirmatory Western blotting was performed, and validated protein expression changes were further investigated. Peroxiredoxin 3 (Prx3), a mitochondrial thioredoxin-dependent hydroperoxidase, is downregulated in the presence of mutant SOD1 in both our cell-culture model and in the spinal cord mitochondria of mutant SOD1 transgenic mice. We confirm the expression of Prx3 within the mitochondria of spinal motor neurons in mouse and humans by immunohistochemistry. Using quantitative real-time PCR (Q-PCR), we show that Prx3 is also downregulated in spinal motor neurons from patients with both sporadic (sMND) and SOD1-related fMND. In a disease characterized by oxidative stress, this represents a potentially important deficit in mitochondrial anti-oxidant defence. Recent evidence suggests that oxidative stress from aberrant copper chemistry may not play a major part in the pathogenesis of SOD1-related fMND. From the results of this study we propose disruption of mitochondrial anti-oxidant defence as an alternative mechanism whereby mutant SOD1 may generate oxidative stress within motor neurons. We further demonstrate that ebselen, an anti-oxidant drug already safely used in human studies and that acts as a Prx mimic, is able to ameliorate the toxicity of mutant SOD1 in our cell-culture model. We conclude by showing that ebselen is capable of inducing transcription of the anti-oxidant response element (ARE) and postulate that ebselen may act both by the transcriptional upregulation of anti-oxidant proteins, and directly as an anti-oxidant in its own right.
Motor neurone disease (MND) is an adult-onset neurodegenerative disease which leads inexorably via weakness of limb, bulbar and respiratory muscles to death from respiratory failure three to five years later. Most MND is sporadic but approximately 10% is inherited. In exciting recent breakthroughs two new MND genes have been identified. Diagnosis is clinical and sometimes difficult--treatable mimics must be excluded before the diagnosis is ascribed. Riluzole prolongs life by only three to four months and is only available for the amyotrophic lateral sclerosis (ALS) form of MND. Management therefore properly focuses on symptom relief and the preservation of independence and quality of life. Malnutrition is a poor prognostic factor. In appropriate patients enteral feeding is recommended although its use has yet to be shown to improve survival. In ALS patients with respiratory failure and good or only moderately impaired bulbar function non-invasive positive pressure ventilation prolongs life and improves quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.