With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m −3 ). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86-729 Mg C ha −1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30-122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products
Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity's role in maintaining ES (B–ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity–ecosystem functioning (B–EF) field provides an alternate context for examining biodiversity's mechanistic role in shaping ES, focusing on species' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B–ES research to look towards underlying B–EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B–EF findings to identify key areas for future developments in B–ES research. We highlight a means by which B–ES research may begin to identify how and when multiple underlying B–EF relationships may scale to final ES delivery and trade-offs.
Societal, economic and scientific interests in knowing where biodiversity is, how it is faring and what can be done to efficiently mitigate further biodiversity loss and the associated loss of ecosystem services are at an all-time high. So far, however, biodiversity monitoring has primarily focused on structural and compositional features of ecosystems despite growing evidence that ecosystem functions are key to elucidating the mechanisms through which biological diversity generates services to humanity. This monitoring gap can be traced to the current lack of consensus on what exactly ecosystem functions are and how to track them at scales beyond the site level. This contribution aims to advance the development of a global biodiversity monitoring strategy by proposing the adoption of a set of definitions and a typology for ecosystem functions, and reviewing current opportunities and potential limitations for satellite remote sensing technology to support the monitoring of ecosystem functions worldwide. By clearly defining ecosystem processes, functions and services and their interrelationships, we provide a framework to improve communication between ecologists, land and marine managers, remote sensing specialists and policy makers, thereby addressing a major barrier in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.