Replication of HIV-1 and N-tropic murine leukemia virus (N-MLV) is restricted in a number of different primate cells. In some cell lines, cross-saturation experiments suggest that the two viruses are interacting with the same restriction factor. Recently, Trim5␣ protein from rhesus monkey was found to restrict HIV-1. We have confirmed this result and have shown that Trim5␣ from two African green monkey cell lines, Vero and CV-1, also restricts HIV-1. In addition, we show that human, rhesus, and African green monkey Trim5␣ can restrict N-MLV. By using a panel of MLV capsid mutants, subtle differences in the anti-MLV activity were identified among the different primate Trim5␣ cDNAs. Trim1 isolated from humans and green monkeys was also found to restrict N-MLV. We hypothesize that the Trim family of proteins plays a widespread role in innate immunity to viral infection.
Lv1 restriction of HIV-1 in the cells of Old World monkeys is associated with the expression of the Trim5 gene. Uniquely, in owl monkey kidney cells, HIV-1 restriction is dependent on the ability of incoming viral capsid protein to bind cyclophilin A (CypA). Cloning of the owl monkey Trim5 gene now reveals the presence of an inserted CypA pseudogene within intron 7 of the Trim5 gene. This insertion results in the formation of a chimeric Trim5-CypA transcript. Transfer of a cDNA corresponding to this transcript into human cells confers cyclosporin A-sensitive resistance to HIV-1 infection. The restriction factor appears to be a chimeric protein created by retrotransposon-mediated exon shuffling
Endogenous retroviruses (ERVs) are widespread in vertebrate genomes and have been loosely grouped into "classes" on the basis of their phylogenetic relatedness to the established genera of exogenous retroviruses. Four of these genera-the lentiviruses, alpharetroviruses, betaretroviruses, and deltaretroviruses-form a well-supported clade in retroviral phylogenies, and ERVs that group with these genera have been termed class II ERVs. We used PCR amplification and sequencing of retroviral fragments from more than 130 vertebrate taxa to investigate the evolution of the class II retroviruses in detail. We confirm that class II retroviruses are largely confined to mammalian and avian hosts and provide evidence for a major novel group of avian retroviruses, and we identify additional members of both the alpha-and the betaretrovirus genera. Phylogenetic analyses demonstrated that the avian and mammalian viruses form distinct monophyletic groups, implying that interclass transmission has occurred only rarely during the evolution of the class II retroviruses. In contrast to previous reports, the lentiviruses clustered as sister taxa to several endogenous retroviruses derived from rodents and insectivores. This topology was further supported by the shared loss of both the class II PR-Pol frameshift site and the class II retrovirus G-patch domain.Retroviruses (family Retroviridae) are characterized by a unique replication strategy. The RNA genome of an extracellular retrovirus is first copied into DNA by virus-encoded reverse transcriptase (RT) and is then integrated into the nuclear DNA of the host cell (35). Integration is highly stable and, consequently, infection of germ line cells can lead to vertical transmission of retroviruses from parent to offspring as Mendelian alleles (8). These retroviruses are termed endogenous (to distinguish them from their horizontally transmitted, exogenous counterparts), and they have been identified in almost all vertebrate orders examined (8, 16). Some endogenous retroviruses (ERVs) represent endogenized copies of extant exogenous retroviruses, but the majority are very old and appear to lack closely related exogenous counterparts (8,16). Analysis of these ERVs in the genomes of humans, mice, and other species indicates a longstanding association between retroviruses and vertebrates, probably dating back several hundred million years, during which retroviruses have repeatedly colonized host genomes (12,19,20,23).Most ERVs show clear homology to one another and to modern exogenous retroviruses, especially across the RT gene, which is relatively refractory to nonsynonymous substitution. Diverse retrovirus sequences can therefore be aligned in order to investigate phylogenetic relationships, and this has been instrumental in the classification of exogenous retroviruses into seven genera (alpha-, beta-, gamma-, delta-, and epsilonretroviruses; lentivirus; and spumavirus) (12,26,34,37). Although many ERVs have not been assigned to particular genera, there is a growing tendency to group them ...
One subset of sequences present within mammalian genomes is the retroelements, which include endogenous retroviruses and retrotransposons. While there are typically thousands of copies of endogenous retroviruses within mammalian hosts, almost no LTR-retrotransposon-like sequences have been identified. Here, we report the presence of a remarkably intact and conserved gypsy-type LTR-retrotransposon sequence within the genomes of several mammals, including humans and mice. Each host probably contains a single orthologous element, indicating that the original, ancestral gypsy LTR-retrotransposon first integrated into mammals over 70 million years ago. It is thus the first described example of a near-intact orthologous retroelement within humans and mice and is one of the most ancient retroelement sequences described to date. Despite their extreme age, the orthologs within each species examined contain a large ORF, between 4.0 and 5.2 kb in length, encoding proteins with sequence similarity to LTR-retrotransposon-derived Capsid (CA), Protease (PR), Reverse Transcriptase (RT), RibonucleaseH (RNaseH), and Integrase (IN). Calculation of nonsynonymous and synonymous nucleotide substitution frequencies indicated that the encoded proteins are under purifying selection, suggesting that these elements have, in fact, been co-opted by their hosts. A possible function for these elements, involving gypsy LTR-retrotransposon restriction in mammals, is discussed.
Deep sequencing can detect somatic DNA mutations in tissues permitting inference of clonal relationships. This has been applied to human epidermis, where sun exposure leads to the accumulation of mutations and an increased risk of skin cancer. However, previous studies have yielded conflicting conclusions about the relative importance of positive selection and neutral drift in clonal evolution. Here, we sequenced larger areas of skin than previously, focusing on cancer-prone skin spanning five decades of life. The mutant clones identified were too large to be accounted for solely by neutral drift. Rather, using mathematical modelling and computational lattice-based simulations, we show that observed clone size distributions can be explained by a combination of neutral drift and stochastic nucleation of mutations at the boundary of expanding mutant clones that have a competitive advantage. These findings demonstrate that spatial context and cell competition cooperate to determine the fate of a mutant stem cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.