SAMHD1, an analogue of the murine interferon (IFN)-γ-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-α. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.
Members of the tripartite motif (TRIM) protein family are involved in various cellular processes, including cell proliferation, differentiation, development, oncogenesis and apoptosis. Some TRIM proteins display antiviral properties, targeting retroviruses in particular. The potential activity of TRIM19, better known as promyelocytic leukaemia protein, against several viruses has been well documented and, recently, TRIM5alpha has been identified as the factor responsible for the previously described Lv1 and Ref1 antiretroviral activities. There is also evidence indicating that other TRIM proteins can influence viral replication. These findings are reviewed here, and the possibility that TRIMs represent a new and widespread class of antiviral proteins involved in innate immunity is also considered.
Replication of HIV-1 and N-tropic murine leukemia virus (N-MLV) is restricted in a number of different primate cells. In some cell lines, cross-saturation experiments suggest that the two viruses are interacting with the same restriction factor. Recently, Trim5␣ protein from rhesus monkey was found to restrict HIV-1. We have confirmed this result and have shown that Trim5␣ from two African green monkey cell lines, Vero and CV-1, also restricts HIV-1. In addition, we show that human, rhesus, and African green monkey Trim5␣ can restrict N-MLV. By using a panel of MLV capsid mutants, subtle differences in the anti-MLV activity were identified among the different primate Trim5␣ cDNAs. Trim1 isolated from humans and green monkeys was also found to restrict N-MLV. We hypothesize that the Trim family of proteins plays a widespread role in innate immunity to viral infection.
Retroviral restriction factors are cellular proteins that interfere with retrovirus replication at a postpenetration, preintegration stage in the viral life cycle. The first restriction activity described was the mouse Fv1 gene. Three different alleles of Fv1, capable of restricting different murine leukaemia viruses (MLV), have been characterized at the molecular level. Two further activities, Ref1, which acts on MLV, and Lv1, which acts on lentiviruses, have been identified in other mammalian species. Recently, it has become clear that Ref1 and Lv1 are encoded by the same gene, Trim5alpha, which inhibits retrovirus replication in a species-specific manner. A series of chimeras between the human and rhesus monkey Trim5 genes were created to map and identify these specificity determinants. The Trim5alpha SPRY domain was found to be responsible for targeting HIV-1 restriction. By contrast, N-MLV restriction appears dependent on both the coiled-coil domain and the SPRY domain. A single amino acid substitution (R332P) in the human Trim5alpha can confer the ability to restrict HIV-1, suggesting that small changes during evolution may have profound effects on our susceptibility to cross-species infection.
Vertebrate evolution has taken place against a background of constant retrovirus infection, and much of the mammalian genome consists of endogenous retrovirus-like elements. Several host genes have evolved to control retrovirus replication, including Friend-virus-susceptibility-1, Fv1, on mouse chromosome 4 (refs 3, 4). The Fv1 gene acts on murine leukaemia virus at a stage after entry into the target cell but before integration and formation of the provirus. Although restriction is not absolute, Fv1 prevents or delays spontaneous or experimentally induced viral tumours. In vitro, Fv1 restriction leads to an apparent 50-1,000 fold reduction in viral titre. Genetic evidence implicates a direct interaction between the Fv1 gene product and a component of the viral preintegration complex, the capsid protein CA (refs 7-9). We have now cloned Fv1: the gene appears to be derived from the gag region of an endogenous retrovirus unrelated to murine leukaemia virus, implying that the Fv1 protein and its target may share functional similarities despite the absence of nucleotide-sequence homology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.