Until recently, there has been less demand for and interest in female-specific sport and exercise science data. As a result, the vast majority of high-quality sport and exercise science data have been derived from studies with men as participants, which reduces the application of these data due to the known physiological differences between the sexes, specifically with regard to reproductive endocrinology. Furthermore, a shortage of specialist knowledge on female physiology in the sport science community, coupled with a reluctance to effectively adapt experimental designs to incorporate female-specific considerations, such as the menstrual cycle, hormonal contraceptive use, pregnancy and the menopause, has slowed the pursuit of knowledge in this field of research. In addition, a lack of agreement on the terminology and methodological approaches (i.e., gold-standard techniques) used within this research area has further hindered the ability of researchers to adequately develop evidenced-based guidelines for female exercisers. The purpose of this paper was to highlight the specific considerations needed when employing women (i.e., from athletes to non-athletes) as participants in sport and exercise science-based research. These considerations relate to participant selection criteria and adaptations for experimental design and address the diversity and complexities associated with female reproductive endocrinology across the lifespan. This statement intends to promote an increase in the inclusion of women as participants in studies related to sport and exercise science and an enhanced execution of these studies resulting in more high-quality female-specific data.
To evaluate the effectiveness of recovery strategies on physical performance during a 3-day tournament style basketball competition, 29 male players (mean age 19.1 years, s= 2.1; height 1.84 m, s= 0.34; body mass 88.5 kg, s= 14.7) were assigned to one of three treatment groups: carbohydrate+stretching (7.7 g kg(-1) day(-1), s= 1.7; 'n = 9), cold water immersion (11 degrees C, 5 x 1; n = 10) or full leg compression garments (18 mmHg, approximately 18 h; n = 10). Effects of the recovery strategies on pre-post tournament performance tests were expressed as the mean change (% +/- standard deviation of the change score). Changes and differences were standardized for accumulated game time, assessed against the smallest worthwhile change for each test, and reported qualitatively. Accumulated fatigue was evident over the tournament with small to moderate impairments in performance tests. Sprint and agility performance decreased by 0.7% (s = 1.3) and 2.0% (s = 1.9) respectively. Vertical jump decreased substantially after the first day for all treatments, and remained suppressed post-tournament. Cold water immersion was substantially better in maintaining 20-m acceleration with only a 0.5% (s = 1.4) reduction in 20-m time after 3 days compared with a 3.2% (s = 1.6) reduction for compression. Cold water immersion (-1.4%, s = 1.7) and compression (-1.5%, s = 1.7) showed similar substantial benefits in maintaining line-drill performance over the tournament, whereas carbohydrate+stretching elicited a 0.4% (s =1.8) reduction. Sit-and-reach flexibility decreased for all groups, although cold water immersion resulted in the smallest reduction in flexibility. Basketball tournament play elicited small to moderate impairments in physical test performance. In conclusion, cold water immersion appears to promote better restoration of physical performance measures than carbohydrate + stretching routines and compression garments.
Purpose:To characterize the physical and physiological responses during different basketball practice drills and games.Methods:Male basketball players (n = 11; 19.1 ± 2.1 y, 1.91 ± 0.09 m, 87.9 ± 15.1 kg; mean ± SD) completed offensive and defensive practice drills, half court 5on5 scrimmage play, and competitive games. Heart rate, VO2 and triaxial accelerometer data (physical demand) were normalized for individual participation time. Data were log-transformed and differences between drills and games standardized for interpretation of magnitudes and reported with the effect size (ES) statistic.Results:There was no substantial difference in the physical or physiological variables between offensive and defensive drills; physical load (9.5%; 90% confidence limits ±45); mean heart rate (-2.4%; ±4.2); peak heart rate (-0.9%; ±3.4); and VO2 (–5.7%; ±9.1). Physical load was moderately greater in game play compared with a 5on5 scrimmage (85.2%; ±40.5); with a higher mean heart rate (12.4%; ±5.4). The oxygen demand for live play was substantially larger than 5on5 (30.6%; ±15.6).Conclusions:Defensive and offensive drills during basketball practice have similar physiological responses and physical demand. Live play is substantially more demanding than a 5on5 scrimmage in both physical and physiological attributes. Accelerometers and predicted oxygen cost from heart rate monitoring systems are useful for differentiating the practice and competition demands of basketball.
Both endurance- and resistance-exercise training were well tolerated and appear to provide similar effects for people with multiple sclerosis, but larger studies are required to confirm these findings.
Purpose:The authors investigated the efficacy of a single exposure to 14 min of cold-water immersion (COLD) and contrast water therapy (CWT) on posttraining recovery in Australian football (AF).Method:Fourteen AF players participated in 3 wk of standardized training. After week 1 training, all players completed a passive recovery (PAS). During week 2, COLD or CWT was randomly assigned. Players undertook the opposing intervention in week 3. Repeat-sprint ability (6 × 20 m), countermovement and squat jumps, perceived muscle soreness, and fatigue were measured pretraining and over 48 h posttraining.Results:Immediately posttraining, groups exhibited similar performance and psychometric declines. At 24 h, repeat-sprint time had deteriorated by 4.1% for PAS and 1.0% for CWT but was fully restored by COLD (0.0%). At 24 and 48 h, both COLD and CWT attenuated changes in mean muscle soreness, with COLD (0.6 ± 0.6 and 0.0 ± 0.4) more effective than CWT (1.9 ± 0.7 and 1.0 ± 0.7) and PAS having minimal effect (5.5 ± 0.6 and 4.0 ± 0.5). Similarly, after 24 and 48 h, COLD and CWT both effectively reduced changes in perceived fatigue, with COLD (0.6 ± 0.6 and 0.0 ± 0.6) being more successful than CWT (0.8 ± 0.6 and 0.7 ± 0.6) and PAS having the smallest effect (2.2 ± 0.8 and 2.4 ± 0.6).Conclusions:AF training can result in prolonged physical and psychometric deficits persisting for up to 48 h. For restoring physical-performance and psychometric measures, COLD was more effective than CWT, with PAS being the least effective. Based on these results the authors recommend that 14 min of COLD be used after AF training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.