Until recently, there has been less demand for and interest in female-specific sport and exercise science data. As a result, the vast majority of high-quality sport and exercise science data have been derived from studies with men as participants, which reduces the application of these data due to the known physiological differences between the sexes, specifically with regard to reproductive endocrinology. Furthermore, a shortage of specialist knowledge on female physiology in the sport science community, coupled with a reluctance to effectively adapt experimental designs to incorporate female-specific considerations, such as the menstrual cycle, hormonal contraceptive use, pregnancy and the menopause, has slowed the pursuit of knowledge in this field of research. In addition, a lack of agreement on the terminology and methodological approaches (i.e., gold-standard techniques) used within this research area has further hindered the ability of researchers to adequately develop evidenced-based guidelines for female exercisers. The purpose of this paper was to highlight the specific considerations needed when employing women (i.e., from athletes to non-athletes) as participants in sport and exercise science-based research. These considerations relate to participant selection criteria and adaptations for experimental design and address the diversity and complexities associated with female reproductive endocrinology across the lifespan. This statement intends to promote an increase in the inclusion of women as participants in studies related to sport and exercise science and an enhanced execution of these studies resulting in more high-quality female-specific data.
Background Concentrations of endogenous sex hormones fluctuate across the menstrual cycle (MC), which could have implications for exercise performance in women. At present, data are conflicting, with no consensus on whether exercise performance is affected by MC phase. Objective To determine the effects of the MC on exercise performance and provide evidence-based, practical, performance recommendations to eumenorrheic women. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four databases were searched for published experimental studies that investigated the effects of the MC on exercise performance, which included at least one outcome measure taken in two or more defined MC phases. All data were meta-analysed using multilevel models grounded in Bayesian principles. The initial meta-analysis pooled pairwise effect sizes comparing exercise performance during the early follicular phase with all other phases (late follicular, ovulation, early luteal, mid-luteal and late luteal) amalgamated. A more comprehensive analysis was then conducted, comparing exercise performance between all phases with direct and indirect pairwise effect sizes through a network meta-analysis. Results from the network meta-analysis were summarised by calculating the Surface Under the Cumulative Ranking curve (SUCRA). Study quality was assessed using a modified Downs and Black checklist and a strategy based on the recommendations of the Grading of Recommendations Assessment Development and Evaluation (GRADE) working group. Results Of the 78 included studies, data from 51 studies were eligible for inclusion in the initial pairwise meta-analysis. The three-level hierarchical model indicated a trivial effect for both endurance- and strength-based outcomes, with reduced exercise performance observed in the early follicular phase of the MC, based on the median pooled effect size (ES0.5 = − 0.06 [95% credible interval (CrI): − 0.16 to 0.04]). Seventy-three studies had enough data to be included in the network meta-analysis. The largest effect was identified between the early follicular and the late follicular phases of the MC (ES0.5 = − 0.14 [95% CrI: − 0.26 to − 0.03]). The lowest SUCRA value, which represents the likelihood that exercise performance is poor, or among the poorest, relative to other MC phases, was obtained for the early follicular phase (30%), with values for all other phases ranging between 53 and 55%. The quality of evidence for this review was classified as “low” (42%). Conclusion The results from this systematic review and meta-analysis indicate that exercise performance might be trivially reduced during the early follicular phase of the MC, compared to all other phases. Due to the trivial effect size, the large between-study variation and the number of poor-quality studies included in this review, general guidelines on exercise performance across the MC cannot be formed; rather, it is recommended that a personalised approach should be taken based on each individual's response to exercise performance across the MC.
Objective To conduct a systematic review and metaanalysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. Design This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. Data sources 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('β-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). Eligibility criteria for selecting studies Inclusion/ exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. Results 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly ( p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant ( p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI −0.201 to 0.416)). There was no moderating effect of training status ( p=0.559), intermittent or continuous exercise ( p=0.436) or total amount of β-alanine ingested ( p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). Summary/conclusions β-alanine had a significant overall effect while subgroup analyses revealed a number of modifying factors. These data allow individuals to make informed decisions as to the likelihood of an ergogenic effect with β-alanine supplementation based on their chosen exercise modality.
Approximately half of elite athletes used HCs, and progestin-only contraceptive users reported greater incidences of negative side effects, especially with the implant. Because of the high interindividual variability in reported side effects, athletes and practitioners should maintain an open dialogue to pursue the best interests of the athlete.
The term Relative Energy Deficiency in Sport was introduced by the International Olympic Committee in 2014. It refers to the potential health and performance consequences of inadequate energy for sport, emphasizing that there are consequences of low energy availability (EA; typically defined as <30 kcal·kg fat-free mass·day) beyond the important and well-established female athlete triad, and that low EA affects populations other than women. As the prevalence and consequences of Relative Energy Deficiency in Sport become more apparent, it is important to understand the current knowledge of the hormonal changes that occur with decreased EA. This paper highlights endocrine changes that have been observed in female and male athletes with low EA. Where studies are not available in athletes, results of studies in low EA states, such as anorexia nervosa, are included. Dietary intake/appetite-regulating hormones, insulin and other glucose-regulating hormones, growth hormone and insulin-like growth factor 1, thyroid hormones, cortisol, and gonadal hormones are all discussed. The effects of low EA on body composition, metabolic rate, and bone in female and male athletes are presented, and we identify future directions to address knowledge gaps specific to athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.