The production of xylanase without cellulase is required for prebleaching of pulp in pulp and paper industry. Aspergillus flavus produced high levels of xylanase on agricultural residues with wheat bran and sugarcane bagasse (4.17 U/mg), and wheat bran and corncob (2.97 U/mg). Xylanase was found to be stable at 45°C with 100% of its original activity remaining after 2 h incubation. At 50°C, xylanase was stable for the first twenty minutes, and had half-life of 50 min. The pH stability for the xylanase from A. flavus was most stable in the range of pH 3.0-8.0 retaining more that 100% activity after 1 h. The addition of 5% glycerol, mannitol or xylitol protected the xylanase from thermal inactivation at 50°C. The protective effect by glycerol, xylitol and mannitol resulted in increases of 162, 262.5 and 150% when compared with the control at 120 min, approximately. Increasing the polyols concentration up to 20% (w/v) further improved the thermostability of xylanase after 120 min at 50°C by 300% when compared with the control (no additive). The kappa number reduced 2.56 points, which corresponds to 18.34 kappa efficiency. This xylanase is an attractive enzyme for potential future application in the pulp and paper industries, since industrial application requires a cellulase-free activity, maintenance of high temperature and enzyme stability are desirable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.