The appearance of disproportionately large amounts of high-density breast parenchyma in mammograms has been found to be a strong indicator of the risk of developing breast cancer. Hence, the breast density model is popular for risk estimation or for monitoring breast density change in prevention or intervention programs. However, the efficiency of such a stochastic model depends on the accuracy of estimation of the model's parameter set. We propose a new approach-heuristic optimization-to estimate more accurately the model parameter set as compared to the conventional and popular expectation-maximization (EM) algorithm. After initial segmentation of a given mammogram, the finite generalized Gaussian mixture (FGGM) model is constructed by computing the statistics associated with different image regions. The model parameter set thus obtained is estimated by particle swarm optimization (PSO) and evolutionary programming (EP) techniques, where the objective function to be minimized is the relative entropy between the image histogram and the estimated density distributions. When our heuristic approach was applied to different categories of mammograms from the Mini-MIAS database, it yielded lower floor of estimation error in 109 out of 112 cases (97.3 %), and 101 out of 102 cases (99.0%), for the number of image regions being five and eight, respectively, with the added advantage of faster convergence rate, when compared to the EM approach. Besides, the estimated density model preserves the number of regions specified by the information-theoretic criteria in all the test cases, and the assessment of the segmentation results by radiologists is promising.
Biomedical Named Entities (NEs) are phrases or combinations of phrases that denote specific objects or groups of objects in the biomedical literature. Research on Named Entity Recognition (NER) is one of the most disseminated activities in the automatic processing of biomedical scientific articles. We analyzed articles relevant to NER in biomedical texts, in the period from 2007 to 2009, through a systematic review. The results identify the main methods in the recognition of Biomedical NEs, features and methodologies for a NER system implementation. Aside from the tendencies identified, some gaps are detected that may constitute opportunities for new studies in the area.
Background: Open Information Extraction (Open IE) aims to obtain not predefined, domain-independent relations from text. This article introduces the Open IE research field, thoroughly discussing the main ideas and systems in the area as well as its main challenges and open issues. The paper describes an open extractor elaborated from the belief that it is not necessary to have an enormous list of patterns or several types of linguistic labels to better perform Open IE. The extractor is based on generic patterns that identify relations not previously specified, including rules corresponding to Cimiano and Wenderoth proposal to learn Qualia structure. Methods: Named LSOE (Lexical-Syntactic pattern-based Open Extractor) and designed to validate such strategy, this extractor is presented and its performance is compared with two Open IE systems. Results:The results demonstrate that LSOE extracts relations that are not learned by other extractors and achieves compatible precision. Conclusions: The work reported here contributes with a new Open IE approach based on pattern matching, demonstrating the feasibility of an extractor based on simple lexical-syntactic patterns.
The number of documents published on the Web in languages other than English grows every year. As a consequence, the need to extract useful information from different languages increases, highlighting the importance of research into Open Information Extraction (OIE) techniques. Different OIE methods have dealt with features from a unique language; however, few approaches tackle multilingual aspects. In those approaches, multilingualism is restricted to processing text in different languages, rather than exploring cross-linguistic resources, which results in low precision due to the use of general rules. Multilingual methods have been applied to numerous problems in Natural Language Processing, achieving satisfactory results and demonstrating that knowledge acquisition for a language can be transferred to other languages to improve the quality of the facts extracted. We argue that a multilingual approach can enhance OIE methods as it is ideal to evaluate and compare OIE systems, and therefore can be applied to the collected facts. In this work, we discuss how the transfer knowledge between languages can increase acquisition from multilingual approaches. We provide a roadmap of the Multilingual Open IE area concerning state of the art studies. Additionally, we evaluate the transfer of knowledge to improve the quality of the facts extracted in each language. Moreover, we discuss the importance of a parallel corpus to evaluate and compare multilingual systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.