Nanosponges are a novel class of hyperbranched cyclodextrin-based nanostructures that exhibits remarkable potential as a drug host system for the improvement in biopharmaceutical properties. This work aims the development of cyclodextrin-based nanosponge of norfloxacin to improve its physicochemical characteristics. β-cyclodextrin was used as base and diphenyl carbonate as crosslinker agent at different proportions to produce nanosponges that were evaluated by in vitro and in vivo techniques. The proportion cyclodextrin:crosslinker 1:2 M/M was chosen due to its higher encapsulation efficiency (80%), revealing an average diameter size of 40 nm with zeta potential of -19 mV. Norfloxacin-loaded nanosponges exhibited higher passage of norfloxacin in comparison to norfloxacin drug alone by Ussing chamber method. The nanosponge formulation also revealed a mucoadhesive property that could increase norfloxacin absorption thus improving its antibiotic activity in an in vivo sepsis model. Therefore, nanosponges may be suitable carrier of norfloxacin to maximize and facilitate oral absorption.
Perivascular adipose tissue (PVAT) has recently entered in the realm of cardiovascular diseases as a putative target for intervention. Notwithstanding its relevance, there is still a long way before the role of PVAT in physiology and pathology is fully understood. The general idea that PVAT anti-contractile effect is beneficial and its pro-contractile effect is harmful is being questioned by several reports. The role of some PVAT important products or systems such as nitric oxide (NO), reactive oxygen species (ROS), and RAS may vary depending on the context, disease, place of production, etc., which adds doubts on how mediators of PVAT anti- and pro-contractile effects are called to action and their final result. This short review will address some points regarding NO, ROS, and RAS in the beneficial and harmful roles of PVAT.
The prevalence of obesity is increasing rapidly in both the developed and the developing countries, thus contributing to the occurrence of other diseases, e.g. hypertension, diabetes and breast cancer. Breast cancer involves a multifactorial process in which the surrounding microenvironment is known to be of great importance in the development and progression of the disease. Thus, adipose tissue, due to its immunological, metabolic and endocrine properties, may play a crucial role in the onset and progression of the disease. The relationship between obesity and breast cancer needs to be studied and characterized so that more effective treatments can be developed, faster and more secure diagnostic and prognostic tests might emerge and, mainly, so that public policies can be designed to prevent the increasing incidence of the disease related to obesity. The main hypotheses regarding the increased risk of developing breast cancer among obese women, i.e. sex hormones, adipokines, insulin and cytokines, are discussed in this review.
Nitric oxide (NO) participates in several physiological processes such as maintenance of blood pressure, host defense, neurotransmission, inhibition of platelet aggregation and learning and memory. NO is also involved in several diseases or dysfunctions in the cardiovascular, central nervous and musculoskeletal systems. NO also has been shown to be a major player in sepsis. NOS-1-derived NO has been shown to be a relevant species in physiology but also is an important element in pathology. There exist some NOS-1 inhibitors and among of them, 7-nitroindazole has been used for its in vivo selectivity. However, 7-NI has a very short half-life (∼2 h) and a poor water solubility. In this study, we describe the preparation and characterization of 7-NI-loaded nanoemulsions (NE). The chemical stability of 7-NI was greatly increased and the drug release rate could be controlled after nanoemulsification. NE reduced NO production in a long-lasting manner in vascular smooth muscle cells and skeletal muscle, without cytotoxicity. Our results evidenced that nanoemulsification approach increases the effective action time of 7-NI, rendering a suitable dosage form, which may be an interesting tool to study the role of NOS-1 in physiology and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.