There are numerous pathogens that can be transmitted through water. Identifying and understanding the routes and magnitude of exposure or infection to these microbial contaminants are critical to assessing and mitigating risk. Conventional approaches of studying immunological responses to exposure or infection such as Enzyme-Linked Immunosorbent Assays (ELISAs) and other monoplex antibody-based immunoassays can be very costly, laborious, and consume large quantities of patient sample. A major limitation of these approaches is that they can only be used to measure one analyte at a time. Multiplex immunoassays provide the ability to study multiple pathogens simultaneously in microliter volumes of samples. However, there are several challenges that must be addressed when developing these multiplex immunoassays such as selection of specific antigens and antibodies, cross-reactivity, calibration, protein-reagent interferences, and the need for rigorous optimization of protein concentrations. In this study, a Design of Experiments (DOE) approach was used to optimize reagent concentrations for coupling selected antigens to Luminex™ xMAP microspheres for use in an indirect capture, multiplex immunoassay to detect human exposure or infection from pathogens that are potentially transmitted through water. Results from Helicobacter pylori, Campylobacter jejuni, Escherichia coli O157:H7, and Salmonella typhimurium singleplexes were used to determine the mean concentrations that would be applied to the multiplex assay. Cut-offs to differentiate between exposed and non-exposed individuals were determined using finite mixed modeling (FMM). The statistical approaches developed facilitated the detection of Immunoglobulin G (IgG) antibodies to H. pylori, C. jejuni, Toxoplasma gondii, hepatitis A virus, rotavirus and noroviruses (VA387 and Norwalk strains) in fifty-four diagnostically characterized plasma samples. Of the characterized samples, the detection rate was 87.5% for H. pylori, and 100% for T. gondii assays and 89% for HAV. Further, the optimized multiplex assay revealed exposure/infection to several other environmental pathogens previously uncharacterized in the samples.
The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. This manuscript describes the development and analysis of a bead-based multiplex immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using a bead-based, solution-phase assay. Beads were coupled with antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary capture antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen-coupled and control beads were then incubated with prospectively-collected human saliva samples, measured on a high throughput analyzer based on the principles of flow cytometry, and the presence of antibodies to each antigen was measured in Median Fluorescence Intensity units (MFI). This multiplex immunoassay has a number of advantages, including more data with less sample; reduced costs and labor; and the ability to customize the assay to many targets of interest. Results indicate that the salivary multiplex immunoassay may be capable of identifying previous exposures and infections, which can be especially useful in surveillance studies involving large human populations.
Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations.
Determining infections from environmental exposures, particularly from waterborne pathogens is a challenging proposition. The study design must be rigorous and account for numerous factors including study population selection, sample collection, storage, and processing, as well as data processing and analysis. These challenges are magnified when it is suspected that individuals may potentially be infected by multiple pathogens at the same time. Previous work demonstrated the effectiveness of a salivary antibody multiplex immunoassay in detecting the prevalence of immunoglobulin G (IgG) antibodies to multiple waterborne pathogens and helped identify asymptomatic norovirus infections in visitors to Boquerón Beach, Puerto Rico. In this study, we applied the immunoassay to three serially collected samples from study participants within the same population to assess immunoconversions (incident infections) to six waterborne pathogens: Helicobacter pylori, Campylobacter jejuni, Toxoplasma gondii , hepatitis A virus, and noroviruses GI. I and GII.4. Further, we examined the impact of sampling on the detection of immunoconversions by comparing the traditional immunoconversion definition based on two samples to criteria developed to capture trends in three sequential samples collected from study participants. The expansion to three samples makes it possible to capture the IgG antibody responses within the survey population to more accurately assess the frequency of immunoconversions to target pathogens. Based on the criteria developed, results showed that when only two samples from each participant were used in the analysis, 25.9% of the beachgoers immunoconverted to at least one pathogen; however, the addition of the third sample reduced immunoconversions to 6.5%. Of these incident infections, the highest levels were to noroviruses followed by T. gondii . Moreover, many individuals displayed evidence of immunoconversions to multiple pathogens. This study suggests that detection of simultaneous infections is possible, with far reaching consequences for the population. The results may lead to further studies to understand the complex interactions that occur within the body as the immune system attempts to ward off these infections. Such an approach is critical to our understanding of medically important synergistic or antagonistic interactions and may provide valuable and critical information to public health officials, water treatment personnel, and environmental managers.
Hepatitis A virus (HAV) is a common infection that is transmitted through the fecal-oral route, shed in the stool of infected individuals and spread either by direct contact or by ingesting contaminated food or water. Each year, approximately 1.4 million acute cases are reported globally with a major risk factor for exposure being low household socioeconomic status. Recent trends show a decrease in anti-HAV antibodies in the general population, with concomitant increases in the numbers of HAV outbreaks. In line with a recreational water study, this effort aims to assess the prevalence of salivary IgG antibodies against HAV and subsequent incident infections (or immunoconversions) in visitors to a tropical beach impacted by a publicly owned treatment works (POTW). We applied a multiplex immunoassay to serially collected saliva samples gathered from study participants who recreated at Boquerón Beach, Puerto Rico. Analysis of assay results revealed an immunoprevalence rate of 16.17% for HAV with 1.43% of the cohort immunoconverting to HAV. Among those who immunoconverted, 10% reported chronic gastrointestinal symptoms and none experienced diarrhea. Tests on water samples indicated good water quality with low levels of fecal indicator bacteria, however, the collection and analysis of saliva samples afforded the ability to detect HAV infections in beachgoers. This rapid assay serves as a cost-effective tool for examining exposure to environmental pathogens and can provide critical information to policy makers, water quality experts and risk assessment professionals seeking to improve and protect recreational water and public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.