Stomach content analyses were performed in 28 dolphins stranded between 1994 and 2007 on the beaches of Rio de Janeiro State (23°06′S 44°18′W/22°14′S 41°54′W), Brazil, comprising six delphinid species: Stenella frontalis (N = 10), Steno bredanensis (N = 7), Tursiops truncatus (N = 4), Delphinus delphis (N = 5), Lagenodelphis hosei (N = 1) and Stenella coeruleoalba (N = 1). Fish otoliths and cephalopod beaks were used to identify the prey species and to estimate the original length and weight. Seven different cephalopod species from six families and 15 fish species belonging to 10 families were identified. Although the fish contribution could be underestimated, cephalopods constituted the group of higher importance, revealing that these invertebrates may represent an important source of energy for delphinids in the region. In this context, the squid Loligo plei should be highlighted due to its important contribution. Most preys were coastal and demersal, and such consumption could indicate coastal foraging habits of the quoted dolphin species. Although dolphins consumed many species of prey in common, they fed on different size-classes of prey. The foraging area of the dolphins could be the same region used by fishing operations, which would represent a risk for incidental capture.
Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO 2 ) within a licensed geological storage complex. Carbon markets require CO 2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO 2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO 2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO 2 at four shallow release facilities -ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO 2 field lab (Norway).
In a joint R&D project under the full sponsorship of PETROBRAS, the Brazilian National Oil Company, the first CO 2 monitoring field lab was started-up in Brazil in 2011.The site chosen, the Ressacada Farm, in the Southern region of the country, offered an excellent opportunity to run controlled CO 2 release experiments in soil and shallow subsurface (< 3 m depth). This paper focuses on the presentation and comparison of the results obtained using electrical imaging, CO 2 flux measurements and geochemical analysis of the groundwater to monitor CO 2 migration in both saturated and unsaturated sand-rich sediments and soil. In 2013 a controlled release campaign was run, covering an area of approximately 6,300 m 2 . Commercial food-grade gaseous carbon dioxide was continuously injected at 3 m depth for 12 days. The average injection rate was 90 g/day, totaling ca. 32kg of gas being released. The low injection rate avoided fracturing of the unconsolidated sediments composing the bulk of the local soil matrix. Monitoring techniques deployed during 30 consecutive days, including background characterization, injection Andresa Oliva et al. / Energy Procedia 63 ( 2014 ) 3992 -4002 3993and post-injection periods, were: (1) 3D electrical imaging using a Wenner array, (2) soil CO 2 flux measurements using accumulation chambers, (3) water sampling and analysis, (4)3D (tridimensional) and 4D (time-lapsed) electrical imaging covering depth levels to approximately 10 m below the surface. Water geochemical monitoring consisted of the analyses of several chemical parameters, as well as acidity and electrical conductivity in five multi-level wells (2m; 4m and 6 m depth) installed in the vicinity of the CO 2 injection well. Comparison of pre-and post-injection electrical imaging shows changes in resistivity values consistent with CO 2 migration pathways. A pronounced increase in resistivity values occurred, from 1,500 ohm.m to 2,000 ohm.m, in the vicinity of the injection well. The accumulation chamber assessment show significant changes in the CO 2 flux during the release experiment: maximum values detected were ca. 270 mmol/m 2 /s(during injection) as compared to background values of c.a. 34mmol/m 2 /s. The pH showed variations after CO 2 injection in two monitoring wells at 2m, 4m and 6m depth. After the CO 2 injection ceased, the lowest pH measured was 4.1, which represents a decrease of 0.5 relative to the background values. Slight variations in the oxidation-reduction potential (Eh) were observed near the CO 2 injection well. There was a decreasing trend of this potential, especially in a monitoring well at 6m depth, ranging from 308mV to 229mV, between the background and the injection scenarios. Ppb level increments were detected in the measurements carried out for the major cations (Ca, Mg, Na, and P) and trace elements (Ag, Al, As, B, Ba, Cd, Pb, Cu, Cr, Ni, Mn, S, V, and Zn). Electrical conductivity and alkalinity, however, remained constant throughout the experiment, with values around 40 μS.cm -1 and 2.5 mgCaCO 3 .L -1 , r...
In Brazil, landfills are commonly used as a method for the final disposal of waste that is compliant with the legislation. This technique, however, presents a risk to surface water and groundwater resources, owing to the leakage of metals, anions, and organic compounds. The geochemical monitoring of water resources is therefore extremely important, since the leachate can compromise the quality and use of surface water and groundwater close to landfills. In this paper, the results of analyses of metals, anions, ammonia, and physicochemical parameters were used to identify possible contamination of surface water and groundwater in a landfill area. A statistical multivariate approach was used. The values found for alkali metals, nitrate, and chloride indicate contamination in the regional groundwater and, moreover, surface waters also show variation when compared to the other background points, mainly for ammonia. Thus, the results of this study evidence the landfill leachate influence on the quality of groundwater and surface water in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.