This paper describes a reproducible method for m precision alignment of polydimethylsiloxane (PDMS) microchannels with coplanar electrodes using a conventional mask aligner for lab-on-a-chip applications. It is based on the use of a silicon mold in combination with a PMMA sarcophagus for precise control of the parallelism between the top and bottom surfaces of molded PDMS. The alignment of the fabricated PDMS slab with electrodes patterned on a glass chip is then performed using a conventional mask aligner with a custom-made steel chuck and magnets. This technique allows to bond and align chips with a resolution of less than 2m.
AC electrokinetics is a versatile tool for contact-less manipulation or characterization of cells and has been widely used for separation based on genotype translation to electrical phenotypes. Cells responses to an AC electric field result in a complex combination of electrokinetic phenomena, mainly dielectrophoresis and electrohydrodynamic forces. Human cells behaviors to AC electrokinetics remain unclear over a large frequency spectrum as illustrated by the self-rotation effect observed recently. We here report and analyze human cells behaviors in different conditions of medium conductivity, electric field frequency and magnitude. We also observe the self-rotation of human cells, in the absence of a rotational electric field. Based on an analytical competitive model of electrokinetic forces, we propose an explanation of the cell self-rotation. These experimental results, coupled with our model, lead to the exploitation of the cell behaviors to measure the intrinsic dielectric properties of JURKAT, HEK and PC3 human cell lines.
Dielectrophoresis is widely used for cell characterization, and the exerted force on cells depends on the difference of polarizability between the latter and the surrounding medium. This physical phenomenon is translated by the real part of the Clausius-Mossotti factor. It is mostly modeled from the imaginary part, measured by electrorotation. The method described here measures experimentally the real part of the Clausius-Mossotti factor. It relies on the cell velocity when submitted to pure dielectrophoresis, and it was conducted on several human cell lines, at different times. A variety of cell lines was evaluated, from different organs or representative of different stages of cancer, with promising findings for early cancer detection.
In this study we present a novel microfluidic hydrodynamic trapping device to probe the cell-cell interaction between all cell samples of two distinct populations. We have exploited an hydrodynamic trapping method using microfluidics to immobilize a batch of cells from the first population at specific locations, then relied on hydrodynamic filtering principles, the flowing cells from the second cell population are placed in contact with the trapped ones, through a roll-over mechanism. The rolling cells interact with the serially trapped cells one after the other. The proposed microfluidic phenomenon was characterized with beads. We have shown the validity of our method by detecting the capacity of olfactory receptors to induce adhesion of cell doublets overexpressing these receptors. We report here the first controlled on-flow single cell resolution cell-cell interaction assay in a microfluidic device for future application in cell-cell interactions-based cell library screenings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.