Significant new mechanical and electronic phenomena can arise in single-crystal semiconductors when their thickness reaches nanometer dimensions, where the two surfaces of the crystal are physically close enough to each other that what happens at one surface influences what happens at the other. We show experimentally that, in silicon nanomembranes, through-membrane elastic interactions cause the double-sided ordering of epitaxially grown nanostressors that locally and periodically highly strains the membrane, leading to a strain lattice. Because strain influences band structure, we create a periodic band gap modulation, up to 20% of the band gap, effectively an electronic superlattice. Our calculations demonstrate that discrete minibands can form in the potential wells of an electronic superlattice generated by Ge nanostressors on a sufficiently thin Si(001) nanomembrane at the temperature of 77 K. We predict that it is possible to observe discrete minibands in Si nanoribbons at room temperature if nanostressors of a different material are grown.
The influence of in-plane biaxial strain on the conduction bands of Si is explored using elastically strained Si(001) nanomembranes and high-resolution x-ray absorption measurements with electron yield detection. The strain-induced splitting of the conduction band minimum and the energy shifts of two higher conduction bands near L1 and L3 are clearly resolved. The linear increase of the splitting of the conduction band minimum with increasing strain and the nonlinear shift of the L1 point toward the conduction band minimum agree quantitatively with current theories.
Freestanding, ultracompliant crystalline-sheet substrates provide a new opportunity to control the growth of strained epitaxial films. Three-dimensional SiGe islands grown on thin silicon nanomembranes self-order as the strain field induced by initial island growth guides nucleation of subsequent islands on the opposite surface. A mechanics analysis explains this unique growth mode, possible only on ultracompliant substrates. The ordering can be tailored by manipulating the thickness and elastic properties of the membrane.
The flexibility of single-crystal Si nanomembranes allows strain to be applied elastically without introducing dislocations in the fabrication process, resulting in uniform strain. It is also relatively easier to apply different types and orientations of strain to Si using elastic-strain sharing than by the traditional graded-strained-layer approach. We use X-ray absorption spectroscopy to measure the effect of uniform biaxial strain on several features of the conduction band structure of Si with ͑001͒ and ͑110͒ orientations. By also measuring the Si 2p photoelectric threshold, we are able to determine the absolute positions of features of the Si conduction band and their change with strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.