A NOD/Scid mouse expressing enhanced green fluorescent protein (eGFP) is described, in which human and mouse tumors marked with red fluorescent protein can be established in vivo, both at subcutaneous and orthotopic locations. Using light microscopy as well as multiphoton confocal microscopy techniques, we visualized in detail the intricate colocalization of tumor and host cells in situ. Moreover, using fluorescence-activated cell sorting (FACS), we were able to completely separate the host cells from the tumor cells, thus providing a system for detailed cellular and molecular analysis of tumor-host cell interactions. The fact that tumor and host cells can be reliably identified also allowed us to detect double-positive cells, possibly arising from cell fusion events or horizontal gene transfer. Similarly, the model can be applied for the detection of circulating metastatic cells and for detailed studies on the vascular compartments within tumors, including vasculogenic mimicry. Thus, the model described should provide significant insight into how tumor cells communicate with their microenvironment.—Niclou, S. P., Danzeisen, C., Eikesdal, H. P., Wiig, H., Brons, N. H. C., Poli, A. M. F., Svendsen, A., Torsvik, A., Enger, P. Ø., Terzis, J. A., Bjerkvig, R. A novel eGFP-expressing immunodeficient mouse model to study tumor-host interactions.
Abstract-The object of this study was to evaluate the contribution of carotid distensibilty on baroreflex sensitivity in patients with type 2 diabetes mellitus with at least 2 additional cardiovascular risk factors. Carotid distensibility was measured bilaterally at the common carotid artery in 79 consecutive diabetic patients and 60 matched subjects without diabetes. Spontaneous baroreflex sensitivity assessment was obtained using time and frequency methods. Baroreflex sensitivity was lower in diabetic subjects as compared with nondiabetic control subjects (5.25Ϯ2.80 ms/mm Hg versus 7.55Ϯ3.79 ms/mm Hg; PϽ0.01, respectively). Contrary to nondiabetic subjects, diabetic subjects showed no significant correlation between carotid distensibility and baroreflex sensitivity (r 2 ϭ0.08, Pϭ0.04 and r 2 ϭ0.04, Pϭ0.13, respectively). In diabetic subjects, baroreflex sensitivity was significantly lower in subjects with peripheral neuropathy than in those with preserved vibration sensation (4.1Ϯ0.5 versus 6.1Ϯ0.4 ms/mm Hg, respectively; Pϭ0.005). Age in nondiabetic subjects, diabetes duration, systolic blood pressure, peripheral or sensitive neuropathy, and carotid distensibility were introduced in a stepwise multivariate analysis to identify the determinants of baroreflex sensitivity. In diabetic patients, neuropathy is a more sensitive determinant of baroreflex sensitivity than the reduced carotid distensibility (stepwise analysis; F ratioϭ5.1, Pϭ0.028 versus F ratioϭ1.9, Pϭ0.16, respectively). In diabetic subjects with 2 additional cardiovascular risk factors, spontaneous baroreflex sensitivity is not related to carotid distensibility. Diabetic subjects represent a particular population within the spectrum of cardiovascular risk situations because of the marked neuropathy associated with their metabolic disorder. Therefore, neuropathy is a more significant determinant of baroreflex sensitivity than carotid artery elasticity in patients with type 2 diabetes.
Malignant gliomas, including the most devastating type, glioblastoma multiforme (GBM), are characterised by their local growth and aggressive infiltration of the normal brain. GBMs result in a profound disability, leading to death in almost all cases. There has been little improvement in outcome despite intensive clinical and laboratory research during recent decades. Interestingly, many researchers have been successful in treating GBM models in animals, but the success has been limited when new treatment principles have been translated into the clinic. One reason for this failure is the lack of appropriate animal models that reflect the behaviour of human GBMs. Therapeutic progress has also been hindered by the limited delivery of effective therapeutic compounds to an extremely heterogenic tumour cell population. This article discusses the present use and limitations of preclinical animal models to study glioma growth and progression. In addition, it focuses on the potential use of cell-based therapies for the treatment of GBMs. This includes aspects of gene therapy, stem cell therapy and immunotherapy. Several of these treatment modalities use the principle of transplanting cells or compounds that either directly or indirectly show therapeutic efficacy. Many of these principles depend on an increased biological knowledge of gliomas. The development of new therapeutic principles based on such knowledge may finally provide glioma patients with an improved survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.