Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity varies greatly, but the mechanisms that adjust lysosomal function to maintain cellular homeostasis are unknown. In this study, we identify an interaction between mTOR and the TFEB transcription factor on the surface of lysosomes that allows mTOR to transduce signals arising from changes in lysosomal status to TFEB and thus control the ability of TFEB to enter the nucleus. This occurs via regulation of the serine 211 phosphorylation-dependent binding of 14-3-3 proteins to TFEB. These results identify TFEB as a novel target of mTOR that couples the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. We further present evidence that the closely related MITF and TFE3 transcription factors are regulated in a similar manner, thus broadening the range of physiological contexts under which such regulation may prove important.
Escherichia coli is a normal inhabitant of the human gut. However, E. coli strains of phylogenetic group B2 harbor a genomic island called "pks" that codes for the production of a polyketide-peptide genotoxin, Colibactin. Here we report that in vivo infection with E. coli harboring the pks island, but not with a pks isogenic mutant, induced the formation of phosphorylated H2AX foci in mouse enterocytes. We show that a single, short exposure of cultured mammalian epithelial cells to live pks + E. coli at low infectious doses induced a transient DNA damage response followed by cell division with signs of incomplete DNA repair, leading to anaphase bridges and chromosome aberrations. Micronuclei, aneuploidy, ring chromosomes, and anaphase bridges persisted in dividing cells up to 21 d after infection, indicating occurrence of breakage-fusion-bridge cycles and chromosomal instability. Exposed cells exhibited a significant increase in gene mutation frequency and anchorage-independent colony formation, demonstrating the infection mutagenic and transforming potential. Therefore, colon colonization with these E. coli strains harboring the pks island could contribute to the development of sporadic colorectal cancer.T he dense bacterial consortium, called "microbiota," that inhabits the intestinal tract is recognized increasingly as playing a major role in human health and disease. The microbiota generally influences the host in a beneficial fashion by shaping gastrointestinal and immune functions, exerting protection against pathogens, and contributing to metabolic pathways (1). Escherichia coli is a consistent member of the human intestinal microbiota, colonizing the intestine within a few days after birth and persisting throughout the life of the host. The E. coli strain population can be categorized in at least four major phylogenetic groups (A, B1, B2, and D), each group being more specifically associated with certain ecological niches. E. coli strains belonging to group B2 are recovered from the environment less frequently but can persist longer in the colon than other groups and represent 30-50% of strains isolated from the feces of healthy humans living in high-income countries (2, 3). We recently discovered that up to 34% of commensal E. coli strains of the phylogenetic group B2 carry a conserved genomic island named "pks island" (4-6). This gene cluster codes for nonribosomal peptide synthetases (NRPS) and polyketide synthetases (PKS) that allow production of a putative hybrid peptide-polyketide genotoxin, Colibactin. In vitro infection with these strains induces DNA double-strand breaks (DSBs) in cultivated human cells, but the pks island was not proved to cause DNA damage in vivo (4).In this study, we wished to explore whether those bacteria were able to induce genetic damage in vivo on the colonic mucosa and to characterize the consequences of this damage on mammalian cells in relation with the number of infecting bacteria. We report that pks + E. coli induced DSBs in vivo. In addition, infection of various ma...
Folliculin localizes to lysosomes and directly interacts with Rag GTPases, promoting mTORC1 activation, when amino acids are abundant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.