Escherichia coli is a normal inhabitant of the human gut. However, E. coli strains of phylogenetic group B2 harbor a genomic island called "pks" that codes for the production of a polyketide-peptide genotoxin, Colibactin. Here we report that in vivo infection with E. coli harboring the pks island, but not with a pks isogenic mutant, induced the formation of phosphorylated H2AX foci in mouse enterocytes. We show that a single, short exposure of cultured mammalian epithelial cells to live pks + E. coli at low infectious doses induced a transient DNA damage response followed by cell division with signs of incomplete DNA repair, leading to anaphase bridges and chromosome aberrations. Micronuclei, aneuploidy, ring chromosomes, and anaphase bridges persisted in dividing cells up to 21 d after infection, indicating occurrence of breakage-fusion-bridge cycles and chromosomal instability. Exposed cells exhibited a significant increase in gene mutation frequency and anchorage-independent colony formation, demonstrating the infection mutagenic and transforming potential. Therefore, colon colonization with these E. coli strains harboring the pks island could contribute to the development of sporadic colorectal cancer.T he dense bacterial consortium, called "microbiota," that inhabits the intestinal tract is recognized increasingly as playing a major role in human health and disease. The microbiota generally influences the host in a beneficial fashion by shaping gastrointestinal and immune functions, exerting protection against pathogens, and contributing to metabolic pathways (1). Escherichia coli is a consistent member of the human intestinal microbiota, colonizing the intestine within a few days after birth and persisting throughout the life of the host. The E. coli strain population can be categorized in at least four major phylogenetic groups (A, B1, B2, and D), each group being more specifically associated with certain ecological niches. E. coli strains belonging to group B2 are recovered from the environment less frequently but can persist longer in the colon than other groups and represent 30-50% of strains isolated from the feces of healthy humans living in high-income countries (2, 3). We recently discovered that up to 34% of commensal E. coli strains of the phylogenetic group B2 carry a conserved genomic island named "pks island" (4-6). This gene cluster codes for nonribosomal peptide synthetases (NRPS) and polyketide synthetases (PKS) that allow production of a putative hybrid peptide-polyketide genotoxin, Colibactin. In vitro infection with these strains induces DNA double-strand breaks (DSBs) in cultivated human cells, but the pks island was not proved to cause DNA damage in vivo (4).In this study, we wished to explore whether those bacteria were able to induce genetic damage in vivo on the colonic mucosa and to characterize the consequences of this damage on mammalian cells in relation with the number of infecting bacteria. We report that pks + E. coli induced DSBs in vivo. In addition, infection of various ma...
Oral administration of the probiotic bacterium Escherichia coli Nissle 1917 improves chronic inflammatory bowel diseases, but the molecular basis for this therapeutic efficacy is unknown. E. coli Nissle 1917 harbors a cluster of genes coding for the biosynthesis of hybrid nonribosomal peptide-polyketide(s). This biosynthetic pathway confers the ability for bacteria to induce DNA double strand breaks in eukaryotic cells. Here we reveal that inactivation of the clbA gene within this genomic island abrogated the ability for the strain to induce DNA damage and chromosomal abnormalities in non-transformed cultured rat intestinal epithelial cells but is required for the probiotic activity of E. coli Nissle 1917. Thus, evaluation of colitis severity induced in rodent fed with E. coli Nissle 1917 or an isogenic non-genotoxic mutant demonstrated the need for a functional biosynthetic pathway both in the amelioration of the disease and in the modulation of cytokine expression. Feeding rodents with a complemented strain for which genotoxicity was restored confirmed that this biosynthetic pathway contributes to the health benefits of the probiotic by modulating its immunomodulatory properties. Our data provide additional evidence for the benefit of this currently used probiotic in colitis but remind us that an efficient probiotic may also have side effects as any other medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.