Epigenetic modifications of the genome play important roles in controlling gene transcription thus regulating several molecular and cellular processes. A novel epigenetic modification - 5-hydroxymethylcytosine (5hmC) - has been recently described and attracted a lot of attention due to its possible involvement in the active DNA demethylation mechanism. TET enzymes are dioxygenases capable of oxidizing the methyl group of 5-methylcytosines (5mC) and thus converting 5mC into 5hmC. Although most of the work on TET enzymes and 5hmC has been carried out in embryonic stem (ES) cells, the highest levels of 5hmC occur in the brain and in neurons, pointing to a role for this epigenetic modification in the control of neuronal differentiation, neural plasticity and brain functions. Here we review the most recent advances on the role of TET enzymes and DNA hydroxymethylation in neuronal differentiation and function.
TET enzymes oxidize 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), a process thought to be intermediary in an active DNA demethylation mechanism. Notably, 5hmC is highly abundant in the brain and in neuronal cells. Here, we interrogated the function of Tet3 in neural precursor cells (NPCs), using a stable and inducible knockdown system and an in vitro neural differentiation protocol. We show that Tet3 is upregulated during neural differentiation, whereas Tet1 is downregulated. Surprisingly, Tet3 knockdown led to a de-repression of pluripotency-associated genes such as Oct4, Nanog or Tcl1, with concomitant hypomethylation. Moreover, in Tet3 knockdown NPCs, we observed the appearance of OCT4positive cells forming cellular aggregates, suggesting de-differentiation of the cells. Notably, Tet3 KD led to a genome-scale loss of DNA methylation and hypermethylation of a smaller number of CpGs that are located at neurogenesis-related genes and at imprinting control regions (ICRs) of Peg10, Zrsr1 and Mcts2 imprinted genes. Overall, our results suggest that TET3 is necessary to maintain silencing of pluripotency genes and consequently neural stem cell identity, possibly through regulation of DNA methylation levels in neural precursor cells.
Lower IMR was associated with better myocardial GLS acutely after STEMI, and with a significantly higher recovery of the LVEF, WMSI, E/E' ratio and GLS, suggesting that IMR is an early marker of cardiac recovery, after acute myocardial infarction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.