Background and Aim: Studies have shown monounsaturated oleic acid to be less toxic than palmitic acid and to prevent/attenuate palmitic acid hepatocites toxicity in steatosis models in vitro. However, to what degree these effects are mediated by steatosis extent is unknown. Methods: We evaluated whether steatosis per se is associated with hepatocytes apoptosis and determined the role of oleic and palmitic acid, the most abundant fatty acids in western diets, on triglyceride accumulation and apoptosis in an in vitro model of steatosis induced in three hepatocytic cell lines (HepG2, HuH7, WRL68). The impact of incubation for 24 h with oleic (0.66 and 1.32 mM) and palmitic acid (0.33 and 0.66 mM), alone or combined (molar ratio 2 : 1) on steatosis, apoptosis, and insulin signalling, was evaluated. Results: Concurrent with PPARg and SREBP-1 gene activation, steatosis extent was larger when cells were treated with oleic than with palmitic acid; the latter fatty acid was associated with increased PPARa expression. Cell apoptosis was inversely proportional to steatosis deposition. Moreover, palmitic, but not oleic acid, impaired insulin signalling. Despite the higher amount of fat resulting from incubation of the two fatty acids combined, the apoptosis rate and impaired insulin signalling were lower than in cells treated with palmitic acid alone, indicating a protective effect of oleic acid. Conclusions: Oleic acid is more steatogenic but less apoptotic than palmitic acid in hepatocityc cell cultures. These data may provide a biological basis for clinical findings on dietary patterns and pathogenetic models of nonalcoholic fatty liver disease.
Pseudoxanthoma elasticum (PXE) is a genetic disorder, characterized by cutaneous, ocular and cardiovascular clinical symptoms, caused by mutations in a gene (ABCC6) that encodes for MRP6 (Multidrug Resistance associated Protein 6), an ATP-binding cassette membrane transporter. The ABCC6 gene was sequenced in 38 unrelated PXE Italian families. The mutation detection rate was 82.9%. Mutant alleles occurred in homozygous, compound heterozygous and heterozygous forms, however the great majority of patients were compound heterozygotes. Twenty-three different mutations were identified, among which 11 were new. Fourteen were missense (61%); five were nonsense (22%); two were frameshift (8.5%) and two were putative splice site mutations (8.5%). The great majority of mutations were located from exon 24 to 30, exon 24 being the most affected. Among the others, exons 9 and 12 were particularly involved. Almost all mutations were located in the intracellular site of MRP6. A positive correlation was observed between patient's age and severity of the disorder, especially for eye alterations. The relevant heterogeneity in clinical manifestations between patients with identical ABCC6 mutations, even within the same family, seems to indicate that, apart from PXE causative mutations, other genes and/or metabolic pathways might influence the clinical expression of the disorder.
Our study shows that weight loss is associated to telomere lengthening in a positive correlation: the greater weight loss the greater telomere lengthening; moreover telomere lengthening is more significant in those subjects with shortest telomeres at baseline.
Ageing associates with reduced bile acid synthesis, possibly related to decreased hepatic expression of hepatocyte nuclear factor-4 and consequently of cholesterol 7alpha-hydroxylase. Age-related modifications of the growth hormone/insulin-like growth factor axis might play a role. These findings may help to elucidate the pathophysiology of age-related modifications of cholesterol metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.