B-doped single-walled carbon nanotubes have been synthesized from sodium tetraphenyl borate and record incorporation percentages of B heteroatoms have been found in this material as-synthesized. However, carbonaceous impurities, besides other byproducts, can still contain boron and therefore exhibit various types of competing bonding environments. To circumvent this issue, which has constantly hindered a conclusive insight to the existing bonding environments in materials alike, we have employed a purification method, which leaves ∼7% at. of B atoms of the total sample composition almost exclusively in the sp 2 configuration. This record B substitutional doping, together with the identification of the competing bonding environments are revealed here unambiguously from X-ray photoelectron spectroscopy. The doping level in the purified tubes is about an order of magnitude larger than in other B-doped single-walled tubes even without purification, and brings the state-of-the-art closer to the controlled applicability of this material.
Controlling the edge morphology and terminations of graphene nanoribbons (GNR) allows tailoring their electronic properties and boosts their application potential. One way of making such structures is encapsulating them inside single‐walled carbon nanotubes. Despite the versatility of Raman spectroscopy to resolve strong spectral signals of these systems, discerning the response of long nanoribbons from that of any residual precursor remaining outside after synthesis has been so far elusive. Here, the terrylene dye is used as precursor to make long and ultra‐narrow armchair‐edged GNR inside nanotubes. The alignment and characteristic length of terrylene encapsulated parallel to the tube's axis facilitates the ribbon formation via polymerization, with high stability up to 750 °C when the hybrid system is kept in high vacuum. A high temperature annealing is used to remove the terrylene external molecules and a subtraction model based on the determination of a scaling factor related to the G‐band response of the system is developed. This not only represents a critical step forward toward the analysis of the nanoribbon‐nanotube system, but it is a study that enables unraveling the Raman signatures of the individual CH‐modes (the signature of edge passivation) for GNR for the first time with unprecedented detail.
Abstract. This paper reports very generally on changes in the situation of women in physics in Austria since 2008 and more specifically on a national web-based survey that was distributed among physicists in Austria. It was aimed at understanding why few women are motivated to study physics and to follow an academic path. Family responsibilitiesamong others-seem to have a deep impact on women's careers. In Austria, initiatives to support women in scientific careers are quite well known throughout the physics community, and a high percentage of women responding to the survey said they had participated in at least one of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.